Abstract

Here we design, construct, and characterize a compact Raman-spectroscopy-based sensor that measures the concentration of a methanol–water mixture with 0.5% accuracy. The sensor measures the concentration with a precision of 0.2% with a 1 second measuring time, and with longer measurement times, the precision reaches as low as 0.006%. We characterize the long-term stability of the instrument over an 11-day period of constant measurement, and confirm that systematic drifts are on the level of 0.02%. We describe methods to improve the sensor performance, providing a path towards accurate, precise, and reliable concentration measurements in harsh environments. This sensor should be adaptable to other water–alcohol mixtures, or other small-molecule liquid mixtures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultimate sensing resolution of water temperature by remote Raman spectroscopy

Myoung-Kyu Oh, Hoonsoo Kang, Nan Ei Yu, Bok Hyeon Kim, JoonHeon Kim, JoonSeok Lee, and Gi Woo Hyung
Appl. Opt. 54(10) 2639-2646 (2015)

High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s

Branislav Grajciar, Yves Lehareinger, Adolf F. Fercher, and Rainer A. Leitgeb
Opt. Express 18(21) 21841-21850 (2010)

Radial profiling of microdroplets using cavity-enhanced Raman spectroscopy

H.-B. Lin and A. J. Campillo
Opt. Lett. 20(15) 1589-1591 (1995)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
    [Crossref]
  2. M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103, 061119 (2013).
    [Crossref]
  3. J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
    [Crossref]
  4. W. W. Rudolph and G. T. Hefter, “Quantitative analysis in alkaline aluminate solutions by Raman spectroscopy,” Anal. Methods 1, 132–138 (2009).
  5. Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
    [Crossref] [PubMed]
  6. Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
    [Crossref]
  7. T. H. Kauffmann and M. D. Fontana, “Optical sensor of salt concentration: uncertainty evaluation,” Sens. Actuators B: Chem. 161, 21–27 (2012).
    [Crossref]
  8. R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
    [Crossref]
  9. V. S. Tiwari, R. R. Kalluru, F. Y. Yueh, J. P. Singh, W. S. Cyr, and S. K. Khijwania, “Fiber optic Raman sensor to monitor the concentration ratio of nitrogen and oxygen in a cryogenic mixture,” Appl. Opt. 46, 3345–3351 (2007).
    [Crossref] [PubMed]
  10. C. A. Holden, S. S. Hunnicutt, R. Sánchez-Ponce, J. M. Craig, and S. C. Rutan, “Study of complexation in methanol/water mixtures by infrared and Raman spectroscopy and multivariate curve resolution–alternating least-squares analysis,” Appl. Spectrosc. 57, 483–490 (2003).
    [Crossref] [PubMed]
  11. F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
    [Crossref]
  12. Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
    [Crossref]
  13. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
    [Crossref]
  14. R. Sarhadian, “Freeze point suppression cooling system with embedded thermal energy storage for refrigeration application,” Tech. rep., Southern California Edison, Report cET15SCE1230 (2017).
  15. S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.
  16. C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
    [Crossref]
  17. M. Jacox, “Vibrational and electronic energy levels of polyatomic transient molecules,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. Linstrom and W. Mallard, eds. (National Institute of Standards and Technology, Gaithersburg, Maryland, 2018).
  18. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. J. Appl. Math. 2, 164–168 (1944).
    [Crossref]
  19. J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).
  20. “SciPy: Open source scientific tools for Python,” (2001–2018). [Online; accessed 2018-05-02].
  21. S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
    [Crossref] [PubMed]
  22. K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
    [Crossref]
  23. D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
    [Crossref]
  24. M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
    [Crossref]
  25. S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
    [Crossref]
  26. F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
    [Crossref]
  27. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [Crossref]
  28. D. A. Howe, D. U. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” in Thirty Fifth Annual Frequency Control Symposium, (1981), pp. 669–716.
    [Crossref]
  29. “IEEE standard definitions of physical quantities for fundamental frequency and time metrology–random instabilities,” IEEE Std 1139-2008 (Revision IEEE Std 1139-1999) pp. 1–50 (2009).
  30. P. J. Herre and U. Barabas, “Mode switching of Fabry-Perot laser diodes,” IEEE J. Quantum Electron. 25, 1794–1799 (1989).
    [Crossref]
  31. J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
    [Crossref]
  32. M. A. Schmidt and J. Kiefer, “Polarization-resolved high-resolution Raman spectroscopy with a light-emitting diode,” J. Raman Spectrosc. 44, 1625–1627 (2013).
    [Crossref]
  33. M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
    [Crossref]
  34. E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
    [Crossref]

2018 (1)

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

2017 (3)

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

2016 (1)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

2015 (2)

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

2014 (3)

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

2013 (3)

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103, 061119 (2013).
[Crossref]

J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
[Crossref]

M. A. Schmidt and J. Kiefer, “Polarization-resolved high-resolution Raman spectroscopy with a light-emitting diode,” J. Raman Spectrosc. 44, 1625–1627 (2013).
[Crossref]

2012 (2)

T. H. Kauffmann and M. D. Fontana, “Optical sensor of salt concentration: uncertainty evaluation,” Sens. Actuators B: Chem. 161, 21–27 (2012).
[Crossref]

F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
[Crossref]

2011 (1)

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

2010 (3)

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
[Crossref]

2009 (1)

W. W. Rudolph and G. T. Hefter, “Quantitative analysis in alkaline aluminate solutions by Raman spectroscopy,” Anal. Methods 1, 132–138 (2009).

2008 (1)

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

2007 (2)

V. S. Tiwari, R. R. Kalluru, F. Y. Yueh, J. P. Singh, W. S. Cyr, and S. K. Khijwania, “Fiber optic Raman sensor to monitor the concentration ratio of nitrogen and oxygen in a cryogenic mixture,” Appl. Opt. 46, 3345–3351 (2007).
[Crossref] [PubMed]

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

2003 (1)

1989 (1)

P. J. Herre and U. Barabas, “Mode switching of Fabry-Perot laser diodes,” IEEE J. Quantum Electron. 25, 1794–1799 (1989).
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

1944 (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. J. Appl. Math. 2, 164–168 (1944).
[Crossref]

Allan, D. U.

D. A. Howe, D. U. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” in Thirty Fifth Annual Frequency Control Symposium, (1981), pp. 669–716.
[Crossref]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Asthana, B. P.

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Bain, E. J.

F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
[Crossref]

Barabas, U.

P. J. Herre and U. Barabas, “Mode switching of Fabry-Perot laser diodes,” IEEE J. Quantum Electron. 25, 1794–1799 (1989).
[Crossref]

Barman, I.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Barnes, J. A.

D. A. Howe, D. U. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” in Thirty Fifth Annual Frequency Control Symposium, (1981), pp. 669–716.
[Crossref]

Braeuer, A.

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Bremer, M. T.

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103, 061119 (2013).
[Crossref]

Burikov, S.

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Chen, J.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Chung, H.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Cordero, E.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Craig, J. M.

Cyr, W. S.

Dantus, M.

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103, 061119 (2013).
[Crossref]

Dasari, R. R.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Deen, M. J.

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

Doerner, S.

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

Dolenko, T.

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Du, Z.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Fan, W.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Fontana, M. D.

T. H. Kauffmann and M. D. Fontana, “Optical sensor of salt concentration: uncertainty evaluation,” Sens. Actuators B: Chem. 161, 21–27 (2012).
[Crossref]

Garbow, B. S.

J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).

Gawinkowski, S.

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Gebrekidan, M. T.

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Goda, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

Greer, J. S.

J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
[Crossref]

Guo, J.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Hashimoto, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

Hauptmann, P.

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Hefter, G. T.

W. W. Rudolph and G. T. Hefter, “Quantitative analysis in alkaline aluminate solutions by Raman spectroscopy,” Anal. Methods 1, 132–138 (2009).

Herre, P. J.

P. J. Herre and U. Barabas, “Mode switching of Fabry-Perot laser diodes,” IEEE J. Quantum Electron. 25, 1794–1799 (1989).
[Crossref]

Hillstrom, K. E.

J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).

Hippler, M.

C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
[Crossref]

Holden, C. A.

Howe, D. A.

D. A. Howe, D. U. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” in Thirty Fifth Annual Frequency Control Symposium, (1981), pp. 669–716.
[Crossref]

Hunnicutt, S. S.

Ideguchi, T.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

Jacox, M.

M. Jacox, “Vibrational and electronic energy levels of polyatomic transient molecules,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. Linstrom and W. Mallard, eds. (National Institute of Standards and Technology, Gaithersburg, Maryland, 2018).

Kalluru, R. R.

Kaminska, A.

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Kauffmann, T. H.

T. H. Kauffmann and M. D. Fontana, “Optical sensor of salt concentration: uncertainty evaluation,” Sens. Actuators B: Chem. 161, 21–27 (2012).
[Crossref]

Kemper, M. S.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Khijwania, S. K.

Kiefer, J.

M. A. Schmidt and J. Kiefer, “Polarization-resolved high-resolution Raman spectroscopy with a light-emitting diode,” J. Raman Spectrosc. 44, 1625–1627 (2013).
[Crossref]

F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
[Crossref]

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Kim, J.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Knipfer, C.

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Korinth, F.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Krafft, C.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Kumar, S.

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

Larsen, R. W.

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Lee, Y.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Leipertz, A.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Levenberg, K.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. J. Appl. Math. 2, 164–168 (1944).
[Crossref]

Li, F.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Li, S.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Li, Z.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

Liu, S.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Men, Z.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Mohr, C.

C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
[Crossref]

Moré, J. J.

J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).

Nedic, M.

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

Noh, J.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Paidi, S. K.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Pandey, R.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Patsaeva, S.

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Petrov, G. I.

J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
[Crossref]

Popp, J.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Rolinski, T.

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Rudolph, W. W.

W. W. Rudolph and G. T. Hefter, “Quantitative analysis in alkaline aluminate solutions by Raman spectroscopy,” Anal. Methods 1, 132–138 (2009).

Rutan, S. C.

Sánchez-Ponce, R.

Sarhadian, R.

R. Sarhadian, “Freeze point suppression cooling system with embedded thermal energy storage for refrigeration application,” Tech. rep., Southern California Edison, Report cET15SCE1230 (2017).

Schie, I. W.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Schlücker, S.

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Schmidt, M. A.

M. A. Schmidt and J. Kiefer, “Polarization-resolved high-resolution Raman spectroscopy with a light-emitting diode,” J. Raman Spectrosc. 44, 1625–1627 (2013).
[Crossref]

Schneider, T.

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

Schorsch, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Schultz, T.

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

Seeger, T.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Selvaganapathy, P. R.

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

Singh, D. K.

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Singh, J. P.

Singh, R. K.

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Sorensen, D. C.

J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).

Spegazzini, N.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Spencer, C. L.

C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
[Crossref]

Srivastava, S. K.

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Starokurov, Y.

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Stelzle, F.

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Steuer, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Stiebing, C.

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Suhm, M. A.

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

Sun, C.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Sun, J.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Sundmacher, K.

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

Takahashi, M.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

Tiwari, V. S.

Valdez, T. A.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Waluk, J.

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Wang, S.

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

Wang, Y.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Wassermann, T. N.

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

Weikl, M. C.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

Will, S.

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

Woo, Y.-A.

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Yakovlev, V. V.

J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
[Crossref]

Ye, W.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Yueh, F. Y.

Yuzhakov, V.

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Zehentbauer, F. M.

F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
[Crossref]

Zhang, C.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Zhang, X.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Zheng, R.

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Zhou, X.

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Accounts Chem. Res. (1)

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with Raman spectroscopy,” Accounts Chem. Res. 50, 264–272 (2017).
[Crossref]

Anal. Chimica Acta (1)

J. Kim, J. Noh, H. Chung, Y.-A. Woo, M. S. Kemper, and Y. Lee, “Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy,” Anal. Chimica Acta 598, 280 (2007).
[Crossref]

Anal. Methods (1)

W. W. Rudolph and G. T. Hefter, “Quantitative analysis in alkaline aluminate solutions by Raman spectroscopy,” Anal. Methods 1, 132–138 (2009).

Analyst (1)

S. Gawinkowski, A. Kaminska, T. Rolinski, and J. Waluk, “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” Analyst 139, 5755–5764 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103, 061119 (2013).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

P. J. Herre and U. Barabas, “Mode switching of Fabry-Perot laser diodes,” IEEE J. Quantum Electron. 25, 1794–1799 (1989).
[Crossref]

J. Chem. Educ. (1)

C. Mohr, C. L. Spencer, and M. Hippler, “Inexpensive Raman spectrometer for undergraduate and graduate experiments and research,” J. Chem. Educ. 87, 326–330 (2010).
[Crossref]

J. Raman Spectrosc (1)

J. S. Greer, G. I. Petrov, and V. V. Yakovlev, “Raman spectroscopy with LED excitation source,” J. Raman Spectrosc.  44, 1058–1059 (2013).
[Crossref]

J. Raman Spectrosc. (3)

M. A. Schmidt and J. Kiefer, “Polarization-resolved high-resolution Raman spectroscopy with a light-emitting diode,” J. Raman Spectrosc. 44, 1625–1627 (2013).
[Crossref]

M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, “A shifted-excitation raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference,” J. Raman Spectrosc. 47, 198–209 (2015).
[Crossref]

D. K. Singh, S. K. Srivastava, S. Schlücker, R. K. Singh, and B. P. Asthana, “Self-association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentration-dependent polarized Raman study and DFT calculations,” J. Raman Spectrosc. 42, 851–858 (2010).
[Crossref]

Meas. Sci. Technol (2)

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol.  19, 085408 (2008).
[Crossref]

F. M. Zehentbauer, E. J. Bain, and J. Kiefer, “Multiple parameter monitoring in a direct methanol fuel cell,” Meas. Sci. Technol.  23, 045602 (2012).
[Crossref]

Mol. Phys. (1)

S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108, 2427–2436 (2010).
[Crossref]

Nat. Photonics (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627 (2014).
[Crossref]

Nat. Sci. Rep (1)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent raman spectroscopy running at 24,000 spectra per second,” Nat. Sci. Rep.  6, 21036 (2016).
[Crossref]

Phys. Chem. Chem. Phys. (1)

M. Nedic, T. N. Wassermann, R. W. Larsen, and M. A. Suhm, “A combined Raman- and infrared jet study of mixed methanol–water and ethanol–water clusters,” Phys. Chem. Chem. Phys. 13, 14050–14063 (2011).
[Crossref]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Q. J. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. J. Appl. Math. 2, 164–168 (1944).
[Crossref]

Sens. Actuators B: Chem. (1)

T. H. Kauffmann and M. D. Fontana, “Optical sensor of salt concentration: uncertainty evaluation,” Sens. Actuators B: Chem. 161, 21–27 (2012).
[Crossref]

Sensors (3)

E. Cordero, F. Korinth, C. Stiebing, C. Krafft, I. W. Schie, and J. Popp, “Evaluation of shifted excitation raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,” Sensors 17, 1724 (2017).
[Crossref]

Z. Du, J. Chen, W. Ye, J. Guo, X. Zhang, and R. Zheng, “Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy,” Sensors 15, 12377–12388 (2015).
[Crossref] [PubMed]

Z. Li, M. J. Deen, S. Kumar, and P. R. Selvaganapathy, “Raman spectroscopy for in-line water quality monitoring instrumentation and potential,” Sensors 14, 17275–17303 (2014).
[Crossref]

Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. (1)

F. Li, Z. Men, S. Li, S. Wang, Z. Li, and C. Sun, “Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 189, 621 – 624 (2018).
[Crossref]

The J. Phys. Chem. B (1)

Y. Yu, W. Fan, Y. Wang, X. Zhou, J. Sun, and S. Liu, “C–H...O interaction in methanol–water solution revealed from Raman spectroscopy and theoretical calculations,” The J. Phys. Chem. B 121, 8179–8187 (2017).
[Crossref]

Other (7)

J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project, in Sources and Development of Mathematical Software(Prentice-Hall, Inc., 1984).

“SciPy: Open source scientific tools for Python,” (2001–2018). [Online; accessed 2018-05-02].

M. Jacox, “Vibrational and electronic energy levels of polyatomic transient molecules,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. Linstrom and W. Mallard, eds. (National Institute of Standards and Technology, Gaithersburg, Maryland, 2018).

R. Sarhadian, “Freeze point suppression cooling system with embedded thermal energy storage for refrigeration application,” Tech. rep., Southern California Edison, Report cET15SCE1230 (2017).

S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, “Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC),” in IEEE SENSORS (2004), pp. 639–641.

D. A. Howe, D. U. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” in Thirty Fifth Annual Frequency Control Symposium, (1981), pp. 669–716.
[Crossref]

“IEEE standard definitions of physical quantities for fundamental frequency and time metrology–random instabilities,” IEEE Std 1139-2008 (Revision IEEE Std 1139-1999) pp. 1–50 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental scheme for the Raman-spectroscopy-based concentration sensor (RCS). A 532-nm laser is focused into the sample. Some photons experience Stokes Raman scattering, and are emitted in all directions. The back-scattered Raman-shifted photons (yellow) are collected by the same lens, but transmit through the longpass dichroic mirror. After passing through a long-pass filter to further reject elastically scattered 532-nm light from the sample, the Raman-shifted light is couped into a fiber which transports it into the grating-based spectrometer.
Fig. 2
Fig. 2 (a) Raman spectra for pure methanol and pure water samples. These spectra are an average of 100 spectra, each collected for 2 seconds. The various peaks in the methanol spectrum can be assigned to various vibrational transitions listed in the NIST WebBook [17]. (b) The concentration of the mixture of can be estimated by fitting the observed spectrum (green) with a linear combination (magenta) of water (blue) and methanol (red) reference spectra.
Fig. 3
Fig. 3 The accuracy of the Raman concentration sensor. (a) The extracted mass fraction of a methanol–water mixture extracted from the Raman spectrum versus the mass fraction measured using a scale. Each point corresponds to a separate measurement, consisting of an average of 10 spectra, each collected using a 2-second exposure time. The various colors indicate independent experiments, conducted on over three days, demonstrating the repeatability of the measurements. A systematic underestimate of the methanol concentration is observed, which becomes most pronounced for methanol concentrations near 50%. (b) The difference between the points in panel (a) and the true mass fraction [dashed line in panel (a)] highlight a systematic underestimate of the methanol concentration. The error-bars indicate the 95-percent confidence interval extracted from the fitting procedure. The empirical correction (blue line) is a simple cosine function that has been fit to the data to model the systematic error. (c) Using this empirical correction function, we can correct the observed methanol concentrations and achieve improved agreement between the observed and true methanol concentrations. We note that the error from sample preparation is estimated to be ±0.15%, which is smaller than the width of the data points.
Fig. 4
Fig. 4 The Raman spectra (green dots) show improved signal-to-noise ratio (SNR) as the exposure time is increased. Practically, the exposure time could not be increased indefinitely due to the finite well depth of the spectrometer. Though the 20 ms spectrum exhibits poor SNR, it is still possible to fit the spectrum and obtain an estimate of the methanol concentration. As shown in Eq. (1), the a and b parameters listed in the legend represent the intensity of the water and methanol spectra (respectively) extracted from the fitting algorithm. The values in parentheses are the standard deviations of these values. We note that negative values for some data points occur due to an electronic background subtraction performed automatically by the spectrometer.
Fig. 5
Fig. 5 Precision of the Raman-based methanol sensor. (a–d) The methanol concentration acquired with various measurement times shows improved precision with increasing measurement time. A black dashed line is drawn at the mean concentration, and gray dashed lines are drawn at ±1% to facilitate comparison. (e) The overlapping Allan deviation of each time series (a–d) provides an estimate of the uncertainty in the measurement for a given measurement time. There is a clear trend that the uncertainty decreases with increasing spectrometer integration time, and with the overall measurement time. For the spectrometer integration longer than 200 ms, the precision roughly follows the trend of 0.2 % × 1 / τ. (Note: 100-second measurement time (d) was acquired using an exposure time of 2000 ms and averaging of 50 spectra. Additionally, the data in (d) were corrected for a slow drift, as described in Section 3.3, and (d) presents the deviation from the fit.)
Fig. 6
Fig. 6 The concentration of a methanol–water mixture measured constantly over an 11-day period. (a) The concentration shows a slow decrease over the sampling period, which likely results from the evaporation of methanol from the sample. Since the concentration due to evaporation should decay exponentially, an exponential function provides a good fit to the slow trend in the data. (b) With the slow drift subtracted, faster drifts(on the several hours timescale) can be seen and correspond to systematic error in the measurement. These errors are less than 0.1% for the entire measurement period and have a standard deviation of 0.02%. We speculate that these drifts in the measured concentration are associated with drifts in the laser frequency. Two data points, corresponding with the opening of the box lid to inspect the sample, were omitted. Otherwise, all data points are plotted, indicating the absence of any spurious readings across the entire measurement period.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f mix ( λ ) = a f w ( λ ) + b f me ( λ ) + c λ + d ,
w me m me m w + m me b ρ me a ρ w + b ρ me ,
w me = w 0 e t / t evap ,

Metrics