Abstract

Circular dichroism imaging has proved a powerful and simple method for extracting information on chiral molecules without specific fluorescent labels. Numerous mathematical models show that outside the absorption band, the circular dichroism signal comes from the scattering interaction and brings additional information about the organization of biopolymers. With this article, we propose a fast method to control the polarization states without moving parts, by means of a photoelastic modulator. We implemented the technique on a modified commercial confocal microscope realizing a multimodal configuration. We demonstrate its imaging capabilities by studying the organization of chromatin DNA inside isolated cell nuclei.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large local optical activity in fractal aggregates of nanoparticles

Vladimir P. Drachev, W. David Bragg, Viktor A. Podolskiy, Vladimir P. Safonov, Won-Tae Kim, Z. Charles Ying, Robert L. Armstrong, and Vladimir M. Shalaev
J. Opt. Soc. Am. B 18(12) 1896-1903 (2001)

Direct observation of light focusing by single photoreceptor cell nuclei

Zuzanna Błaszczak, Moritz Kreysing, and Jochen Guck
Opt. Express 22(9) 11043-11060 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
    [Crossref]
  2. A. Le Gratiet, M. Dubreuil, S. Rivet, and Y. Le Grand, “Scanning Mueller polarimetric microscopy,” Opt. Lett. 41(18), 4336–4339 (2016).
    [Crossref] [PubMed]
  3. J. M. Bueno and M. C. Campbell, “Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry,” Opt. Lett. 27(10), 830–832 (2002).
    [Crossref] [PubMed]
  4. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
    [Crossref] [PubMed]
  5. L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
    [Crossref]
  6. K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
    [Crossref] [PubMed]
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  8. C. J. Bustamante, “Circular Intensity Differential Scattering of chiral molecules,” Ph. D Thesis California Univ., Berkeley (1980).
  9. C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
    [Crossref] [PubMed]
  10. D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
    [Crossref] [PubMed]
  11. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-know effect,” J. Opt. Soc. Am. 59(8), 950–954 (1969).
    [Crossref]
  12. S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
    [Crossref] [PubMed]
  13. E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
    [Crossref]
  14. K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
    [Crossref] [PubMed]
  15. A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
    [Crossref] [PubMed]
  16. M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
    [Crossref] [PubMed]
  17. F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
    [Crossref] [PubMed]
  18. M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
    [Crossref] [PubMed]
  19. W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
    [Crossref]
  20. W. Mickols and M. F. Maestre, “Scanning differential polarization microscope: its use to image linear and circular differential scattering,” Rev. Sci. Instrum. 59(6), 867–872 (1988).
    [Crossref]
  21. L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
    [Crossref] [PubMed]
  22. V. K. Gupta and J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65(9), 2823–2828 (1994).
    [Crossref]
  23. F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
    [Crossref] [PubMed]
  24. T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
    [Crossref]
  25. J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
    [Crossref] [PubMed]
  26. H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661–662 (1948).
  27. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  28. D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
    [Crossref] [PubMed]
  29. H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

2017 (2)

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

2016 (2)

2014 (1)

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

2012 (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

2009 (1)

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
[Crossref] [PubMed]

2008 (1)

2004 (1)

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
[Crossref] [PubMed]

2003 (1)

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

1995 (1)

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

1994 (1)

V. K. Gupta and J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65(9), 2823–2828 (1994).
[Crossref]

1991 (2)

L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
[Crossref] [PubMed]

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

1988 (2)

F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
[Crossref] [PubMed]

W. Mickols and M. F. Maestre, “Scanning differential polarization microscope: its use to image linear and circular differential scattering,” Rev. Sci. Instrum. 59(6), 867–872 (1988).
[Crossref]

1987 (1)

M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
[Crossref] [PubMed]

1986 (1)

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

1985 (4)

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
[Crossref]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

1983 (1)

C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
[Crossref] [PubMed]

1969 (1)

1948 (1)

H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661–662 (1948).

Alali, S.

Allegrini, M.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Baltzer, N.

E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
[Crossref]

Beach, D. A.

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

Bertolotto, M.

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

Bueno, J. M.

Bustamante, C.

L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
[Crossref] [PubMed]

M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
[Crossref] [PubMed]

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
[Crossref] [PubMed]

Campbell, M. C.

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Chipman, R. A.

Claborn, K.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Deerinck, T. J.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Diaspro, A.

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

Dubreuil, M.

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Ellisman, M. H.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Elsner, A. E.

Embury, S. H.

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

Finzi, L.

L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
[Crossref] [PubMed]

Fischer, A. H.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
[Crossref] [PubMed]

Freudenthal, J. H.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Fuso, F.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Gribble, A.

Gupta, V. K.

V. K. Gupta and J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65(9), 2823–2828 (1994).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Hollis, E.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
[Crossref] [PubMed]

Huber, E.

E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
[Crossref]

Ishizaka, S.

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

Kahr, B.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
[Crossref] [PubMed]

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Kaminsky, W.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Kao, F. J.

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Keller, D.

M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
[Crossref] [PubMed]

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

Kemp, J. C.

Kim, M.

M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
[Crossref] [PubMed]

Kornfield, J. A.

V. K. Gupta and J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65(9), 2823–2828 (1994).
[Crossref]

Kurimoto, M.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Le Grand, Y.

Le Gratiet, A.

Livolant, F.

F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
[Crossref] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Maestre, M. F.

F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
[Crossref] [PubMed]

W. Mickols and M. F. Maestre, “Scanning differential polarization microscope: its use to image linear and circular differential scattering,” Rev. Sci. Instrum. 59(6), 867–872 (1988).
[Crossref]

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
[Crossref] [PubMed]

Mazumder, N.

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

Micali, N.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Mickols, W.

W. Mickols and M. F. Maestre, “Scanning differential polarization microscope: its use to image linear and circular differential scattering,” Rev. Sci. Instrum. 59(6), 867–872 (1988).
[Crossref]

F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
[Crossref] [PubMed]

Mickols, W. C.

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

Mueller, H.

H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661–662 (1948).

Nafie, L. A.

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

Nickerson, J. A.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
[Crossref] [PubMed]

Nicolini, C.

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

O’Shea, C. C.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Occhiuto, I. G.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Onuki, H.

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

Ou, H. D.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Patanè, S.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Phan, S.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Puklin-Faucher, E.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Qiu, J.

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

Rivet, S.

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Salzman, G. C.

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Scolaro, L. M.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Tantussi, F.

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Thor, A.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tinoco, I.

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
[Crossref] [PubMed]

Tobey, R. A.

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Twietmeyer, K. M.

Ulibarri, L.

L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
[Crossref] [PubMed]

VanNasdale, D.

Vergani, L.

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

Vitkin, I. A.

von Allmen, M.

E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
[Crossref]

Wells, K. S.

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Yamada, T.

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

Yuri, M.

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

Zhao, Y.

Zink, D.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
[Crossref] [PubMed]

Biochemistry (1)

M. F. Maestre, G. C. Salzman, R. A. Tobey, and C. Bustamante, “Circular dichroism studies on single chinese hamster cells,” Biochemistry 24(19), 5152–5157 (1985).
[Crossref] [PubMed]

Biophys. J. (2)

M. Kim, D. Keller, and C. Bustamante, “Differential polarization imaging. I. theory,” Biophys. J. 52(6), 911–927 (1987).
[Crossref] [PubMed]

L. Finzi, L. Ulibarri, and C. Bustamante, “Differential polarization imaging. V. numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images,” Biophys. J. 59(6), 1183–1193 (1991).
[Crossref] [PubMed]

Biopolymers (2)

F. Livolant, W. Mickols, and M. F. Maestre, “Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad,” Biopolymers 27(11), 1761–1769 (1988).
[Crossref] [PubMed]

K. S. Wells, D. A. Beach, D. Keller, and C. Bustamante, “An analysis of circular intensity differential scattering measurements: studies on the sperm cell of eledone cirrhosa,” Biopolymers 25(11), 2043–2064 (1986).
[Crossref] [PubMed]

Biotechnology (1)

W. C. Mickols, C. Bustamante, M. F. Maestre, I. Tinoco, and S. H. Embury, “Differential polarization microscopy: a new imaging technique,” Biotechnology 3(8), 711–714 (1985).
[Crossref]

Chirality (1)

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21(1ESuppl 1), E20–E27 (2009).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

A. Diaspro, M. Bertolotto, L. Vergani, and C. Nicolini, “Polarized light scattering of nucleosomes and polynucleosomes-in situ and in vitro studies,” IEEE Trans. Biomed. Eng. 38(7), 670–678 (1991).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Yamada, H. Onuki, M. Yuri, and S. Ishizaka, “Microscopic imaging of circular dichroism using a polarizing undulator,” J. Appl. Phys. 39(1), 310–315 (2000).
[Crossref]

J. Mol. Struct. (1)

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

J. Opt. (1)

N. Mazumder, J. Qiu, F. J. Kao, and A. Diaspro, “Mueller matrix signature in advanced fluorescence microscopy imaging,” J. Opt. 19(2), 025301 (2017).
[Crossref]

J. Opt. Soc. Am. (2)

Nanoscale (1)

F. Tantussi, F. Fuso, M. Allegrini, N. Micali, I. G. Occhiuto, L. M. Scolaro, and S. Patanè, “Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy,” Nanoscale 6(18), 10874–10878 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4(9), 677–687 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. U.S.A. 80(12), 3568–3572 (1983).
[Crossref] [PubMed]

D. Keller, C. Bustamante, M. F. Maestre, and I. Tinoco, “Imaging of optically active biological structures by use of circularly polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(2), 401–405 (1985).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

E. Huber, N. Baltzer, and M. von Allmen, “Polarization modulation ellipsometry: a compact and easy handling instrument,” Rev. Sci. Instrum. 56(12), 2222–2227 (1985).
[Crossref]

W. Mickols and M. F. Maestre, “Scanning differential polarization microscope: its use to image linear and circular differential scattering,” Rev. Sci. Instrum. 59(6), 867–872 (1988).
[Crossref]

V. K. Gupta and J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65(9), 2823–2828 (1994).
[Crossref]

Science (1)

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, “ChromEMT: visualizing 3D chromatin structure and compaction n interphase and mitotic cells,” Science 357(6349), eaag0025 (2017).

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. J. Bustamante, “Circular Intensity Differential Scattering of chiral molecules,” Ph. D Thesis California Univ., Berkeley (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Block diagram of the CIDS scanning microscope. Ti:Sa: Titanium-Sapphire coherent laser source tuned at 740 nm. SU: Scanning Unit. PEM: Photoelastic Modulator at 50 kHz resonant frequency. Obj1: Microscope objective to image the sample. Obj2: Microscope objective used as a condenser to collect the transmitted light. GT: Glan-Taylor prism. APD1 and APD2: Avalanche Photodiode for + 45° and −45° polarization detection after the GT. LA: Lock-in Amplifiers. LA#1 and LA#2: input channels of the LA, locked at 50 kHz from the reference signal of the PEM. The two APDs are both connected to each channel of the LA and also directly to the control unit. The terms “ I + ” and “ I ” are the detected intensities + 45° and −45° polarization projections after the GT, respectively. The red and green color optical path correspond to the transmitted polarimetric and to the reflected fluorescence path, respectively.
Fig. 2
Fig. 2 Raw images corresponding of the detected signal background (“BG”) image for (a)  I + and (b) I . (c) The signal difference between the two channels I + I . Here G, the rescale factor between the two detectors is equal to 1.6.
Fig. 3
Fig. 3 (Top) Raw images of the isolated nucleus after extraction corresponding to the detected 50 kHz signals for (a) I ω + , (b) I ω and (c) the sum of the images (a) and (b), i.e. m 03 = I ω + +G I ω , where G is the rescale factor between the two detectors. (Bottom) Raw images corresponding of the detected DC components signal for (d) I DC + , (e) I DC and (f) the sum of the images (d) and (e), i.e. m 00 = I DC + +G I DC .
Fig. 4
Fig. 4 (a) Normalized CIDS image of an isolated Hek nucleus after extraction. (b) Fluorescence image of the same isolated Hek nucleus labelled with Hoechst. (c) Merge of images (a) and (b). (d) Intensity plot from the orange arrow in (c). The blue plot is the intensity profile from the CIDS image (a) and the green plot is the Hoechst profile from image 4.(b). The dashed lines indicate the estimated area of the nucleus.
Fig. 5
Fig. 5 Mueller-matrix element images of an isolated Hek nucleus after extraction. The Mueller-matrix coefficients are available without moving parts and are obtained by comparing the raw data images, shown in Fig. 2. “SUM” and “DIFF” correspond to the sum and the difference of the two channels for both 50 kHz and 100 kHz reference signal of the PEM.
Fig. 6
Fig. 6 Normalized Mueller-matrix element images of an isolated Hek nucleus after extraction, available for the actual experimental configuration of the microscope.

Tables (1)

Tables Icon

Table 1 Expression of the modulation intensities detected at + 45° ( I + ) and −45° ( I ) after the Glan-Taylor prism.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

CIDS= I L I R I L + I R
S out =[ M sample ].[ M PEM ]( 1 0 1 0 )
[ M sample ]=[ m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ]
[ M PEM ]=[ 1 0 0 0 0 1 0 0 0 0 cos( δ ) sin( δ ) 0 0 sin( δ ) cos( δ ) ]
S out =( m 00 m 02 cos(δ)+ m 03 sin(δ) m 10 m 12 cos(δ)+ m 13 sin(δ) m 20 m 22 cos(δ)+ m 23 sin(δ) m 00 m 32 cos(δ)+ m 33 sin(δ) )
I(t)= I DC + I ω cos(ωt)
CIDS(x,y)= I ω + (x,y)+G. I ω (x,y) I DC + (x,y)+G. I DC (x,y) = m 03 (x,y) m 00 (x,y)

Metrics