Abstract

The broadband dispersion compensator plays an important role for the light transmission of ultrashort pulses. Inspired by the requirement for a compact, tunable dispersion compensator operating in the mid-infrared spectral range, we proposed a compact dispersion compensator with hybrid silicon and lithium niobate nanowire configuration and investigated its group-velocity dispersion characteristics numerically. The results show that the tailored hybrid waveguide can exhibit group velocity dispersion of up to 105 ps2·km−1 in the 2~5 μm spectral range. In addition, the dispersion can be tuned via the applied bias field by the aid of the excellent electro-optical performance of the host material, lithium niobate. This work may provide some guidelines for designing broadband dispersion compensators and make an inroad for miniaturized functional optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the dispersion behavior of optical nanowires with intercore-cladding lithium niobate thin film

Hairong He, Lili Miao, Guobao Jiang, Chujun Zhao, and Shuangchun Wen
Opt. Express 23(21) 27085-27093 (2015)

Optimal design of composite nanowires for extended reach of surface plasmon-polaritons

Dayan Handapangoda, Malin Premaratne, Ivan D. Rukhlenko, and Chennupati Jagadish
Opt. Express 19(17) 16058-16074 (2011)

A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering

Mark D. Turner, Tanya M. Monro, and Shahraam Afshar V.
Opt. Express 17(14) 11565-11581 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
    [Crossref]
  3. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
    [Crossref] [PubMed]
  4. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
    [Crossref]
  5. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  6. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  7. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  8. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [Crossref] [PubMed]
  9. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
    [Crossref]
  10. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [Crossref] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  12. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  13. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  14. C. Zhao, Z. Tang, Y. Ye, D. Fan, L. Qian, S. Wen, and G. Chen, “Field and dispersion properties of subwavelength-diameter hollow optical fiber,” Opt. Express 15(11), 6629–6634 (2007).
    [Crossref] [PubMed]
  15. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  16. Y. Zou, S. Chakravarty, C. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices,” Photon. Res. 6(4), 254–276 (2018).
    [Crossref]
  17. H. He, L. Miao, G. Jiang, C. Zhao, and S. Wen, “Tailoring the dispersion behavior of optical nanowires with intercore-cladding lithium niobate thin film,” Opt. Express 23(21), 27085–27093 (2015).
    [Crossref] [PubMed]
  18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  19. L. Cai, S. L. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
    [Crossref] [PubMed]
  20. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [Crossref]
  21. A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
    [Crossref]
  22. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
    [Crossref]
  23. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
    [Crossref]
  24. L. Chen, Q. Xu, M. Wood, and R. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  25. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  26. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006).
    [Crossref] [PubMed]
  27. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006).
    [Crossref] [PubMed]
  28. E. Karadeniz and P. G. Kornreich, “Intercore-cladding uniaxial dielectric thin film optical fibers,” Opt. Eng. 45(8), 085001 (2006).
    [Crossref]
  29. J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
    [Crossref]
  30. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
    [Crossref] [PubMed]

2018 (1)

2015 (3)

2014 (2)

2013 (2)

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

2012 (3)

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
[Crossref] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2010 (2)

2009 (2)

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (2)

2006 (4)

2004 (2)

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

2003 (2)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

2000 (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

1993 (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Agrawal, G. P.

Agronin, A.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Bernier, M.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

Cai, L.

Caron, N.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Chakravarty, S.

Chen, G.

Chen, L.

Chen, R. T.

Chen, Y.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

Chong, A.

Chung, C.

Du, Y. W.

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

Dudko, G.

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

El Amraoui, M.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Fan, D.

Faucher, D.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Filimonov, Y.

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Fortin, V.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gertz, F.

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

Gong, D. W.

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Guo, X.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

Han, S. L.

Hasegawa, T.

Haxsen, F.

He, H.

Henderson-Sapir, O.

Hu, H.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jiang, G.

Jiang, X. S.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

Ju, J. J.

Karadeniz, E.

E. Karadeniz and P. G. Kornreich, “Intercore-cladding uniaxial dielectric thin film optical fibers,” Opt. Eng. 45(8), 085001 (2006).
[Crossref]

Khitun, A.

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

Kim, J. T.

Kim, M. S.

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

Kornreich, P. G.

E. Karadeniz and P. G. Kornreich, “Intercore-cladding uniaxial dielectric thin film optical fibers,” Opt. Eng. 45(8), 085001 (2006).
[Crossref]

Koshiba, M.

Kozhevnikov, A.

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

Kracht, D.

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Lin, Q.

Lipson, M.

Lou, J.

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

Manolatou, C.

Mazur, E.

Messaddeq, Y.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Miao, L.

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

Molotskii, M.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Morgner, U.

Munch, J.

Neumann, J.

Ottaway, D. J.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Park, S.

Park, S. K.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Qian, L.

Reano, R.

Reano, R. M.

Renninger, W. H.

Rosenman, G.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Rosenwaks, Y.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

Saitoh, K.

Sasaoka, E.

Schmidt, B. S.

Sharping, J. E.

Shin, S. Y.

Shvebelman, M.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Tang, Z.

Tong, L.

Tong, L. M.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

Turner, A. C.

Urenski, P.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Vallée, R.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

Wandt, D.

Wen, S.

Wienke, A.

Wise, F. W.

Wood, M.

Wood, M. G.

Xin, J. B.

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

Xu, Q.

Xu, X.

Yang, Q.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

Ye, Y.

Ye, Z.

Yin, L.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhao, C.

Zhou, Z. X.

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

Zou, Y.

Appl. Phys. Lett. (3)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000).
[Crossref]

A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106(14), 142409 (2015).
[Crossref]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technol. Lett. 11(6), 674–676 (1999).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. B. Xin, Z. X. Zhou, Y. W. Du, and D. W. Gong, “Optical properties of the a-axis lithium niobate single-crystal fiber with applied electric field,” J. Opt. A, Pure Appl. Opt. 11(4), 045203 (2009).
[Crossref]

Nat. Photonics (5)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Opt. Eng. (2)

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. El Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 054202 (2013).
[Crossref]

E. Karadeniz and P. G. Kornreich, “Intercore-cladding uniaxial dielectric thin film optical fibers,” Opt. Eng. 45(8), 085001 (2006).
[Crossref]

Opt. Express (9)

H. He, L. Miao, G. Jiang, C. Zhao, and S. Wen, “Tailoring the dispersion behavior of optical nanowires with intercore-cladding lithium niobate thin film,” Opt. Express 23(21), 27085–27093 (2015).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006).
[Crossref] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

L. Cai, S. L. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

C. Zhao, Z. Tang, Y. Ye, D. Fan, L. Qian, S. Wen, and G. Chen, “Field and dispersion properties of subwavelength-diameter hollow optical fiber,” Opt. Express 15(11), 6629–6634 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett. 90(10), 107601 (2003).
[Crossref] [PubMed]

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Rep. Prog. Phys. (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of the microfiber waveguide structure.
Fig. 2
Fig. 2 The GVD curves of the hybrid nanowire with different core size.
Fig. 3
Fig. 3 The GVD curves for the hybrid nanowire with different waveguide geometry at wavelength 3 μm.
Fig. 4
Fig. 4 The GVD curves for the hybrid nanowire with different waveguide geometry at wavelength 4 μm.
Fig. 5
Fig. 5 The GVD curves for the hybrid nanowire with different waveguide geometry at wavelength 5 μm.
Fig. 6
Fig. 6 Wavelength-dependent GVD curves with z-direction applied positive electric field.
Fig. 7
Fig. 7 Wavelength-dependent GVD curves with z-direction applied negative electric field.
Fig. 8
Fig. 8 GVD curves with or without the z-direction applied electric field.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z ={ m A 0 m J m (ur) f c , 0 <r< a m [ B 0 m m( n e n o vr)+ C 0 m m( n e n o vr) ] f c a < r < b m D 0 m K m (wr) f c , r > b
H z ={ m A 1 m J m (ur) f s , 0 < r < a m [ B 1 m m (vr)+ C 1 m m(vr)] f s a < r < b m D 1 m K m (wr) f s , r > b
det[M(β)]=0