Abstract

A detailed theoretical and experimental study of metal-microheater integrated silicon waveguide phase-shifters has been carried out. It has been shown that the effective thermal conductance gw and the effective heat capacitance hw evaluated per unit length of the waveguide are two useful parameters contributing to the overall performance of a thermo-optic phase-shifter. Calculated values of temperature sensitivity, SH = 1/gw and thermal response time, τth = hw/gw of the phase-shifter are found to be consistent with the experimental results. Thus, a new parameter H = SH/τth = 1/hw has been introduced to capture the overall figure of merit of a thermo-optic phase-shifter. A folded waveguide phase-shifter design integrated in one of the arms of a balanced MZI switch is shown to be superior to that of a straight waveguide phase-shifter of the same waveguide cross-sectional geometry. The MZI switches were designed to operate in TE-polarization over a broad wavelength range (λ ∼ 1550 nm).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator

Saket Kaushal and Bijoy Krishna Das
Appl. Opt. 55(11) 2837-2842 (2016)

Efficient, compact and low loss thermo-optic phase shifter in silicon

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland
Opt. Express 22(9) 10487-10493 (2014)

Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch

Ke Liu, Chenglong Zhang, Sixuan Mu, Shuang Wang, and Volker J. Sorger
Opt. Express 24(14) 15845-15853 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
    [Crossref]
  2. H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express 18, 18067–18076 (2010).
    [Crossref] [PubMed]
  3. J. Tao, H. Cai, Y. Gu, and A. Liu, “Demonstration of a compact wavelength tracker using a tunable silicon resonator,” Opt. Express 22, 24104–24110 (2014).
    [Crossref] [PubMed]
  4. R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
  5. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. B. Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express 18, 23079–23087 (2010).
    [Crossref] [PubMed]
  6. P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
    [Crossref] [PubMed]
  7. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref] [PubMed]
  8. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express 25, 7538–7546 (2017).
    [Crossref] [PubMed]
  9. C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
    [Crossref]
  10. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
    [Crossref] [PubMed]
  11. S. Kaushal and B. K. Das, “Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator,” Appl. Opt. 55, 2837–2842 (2016).
    [Crossref] [PubMed]
  12. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
    [Crossref]
  13. A. Atabaki, E. S. Hosseini, A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
    [Crossref] [PubMed]
  14. D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24, 7871–7878 (2016).
    [Crossref] [PubMed]
  15. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
    [Crossref] [PubMed]
  16. P. Sun and R. M. Reano, “Free-standing silicon-on-insulator strip waveguides for submilliwatt thermo-optic switches,” in Frontiers in Optics, (Optical Society of America, 2010), p. FMH3.
    [Crossref]
  17. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
    [Crossref]
  18. Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
    [Crossref]
  19. M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
    [Crossref]
  20. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21, 15706–15718 (2013).
    [Crossref] [PubMed]
  21. “COMSOL Multiphysics version 5.3,” https://www.comsol.com .
  22. B. Singh and N. Surplice, “The electrical resistivity and resistance-temperature characteristics of thin titanium films,” Thin Solid Films 10, 243–253 (1972).
    [Crossref]
  23. M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
    [Crossref]
  24. P. Johnson and R. Christy, “Optical constants of transition metals: Ti, C, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
    [Crossref]
  25. F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer (Cengage Learning, 2012).
  26. R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
    [Crossref]
  27. S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
    [Crossref]

2019 (1)

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

2018 (1)

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

2017 (3)

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
[Crossref]

S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
[Crossref]

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express 25, 7538–7546 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (1)

2013 (2)

2011 (2)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2008 (1)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

1998 (1)

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

1974 (1)

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, C, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
[Crossref]

1972 (1)

B. Singh and N. Surplice, “The electrical resistivity and resistance-temperature characteristics of thin titanium films,” Thin Solid Films 10, 243–253 (1972).
[Crossref]

Adibi, A.

Asheghi, M.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

Atabaki, A.

Atabaki, A. H.

Bahadori, M.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Bassi, P.

Bergman, K.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Bohn, M. S.

F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer (Cengage Learning, 2012).

Cai, H.

J. Tao, H. Cai, Y. Gu, and A. Liu, “Demonstration of a compact wavelength tracker using a tunable silicon resonator,” Opt. Express 22, 24104–24110 (2014).
[Crossref] [PubMed]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Chandran, S.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
[Crossref]

S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
[Crossref]

Cheben, P.

Cheng, Q.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Chmielak, B.

Christy, R.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, C, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
[Crossref]

Chrostowski, L.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
[Crossref]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Cong, G.

Dahlem, M. S.

Dang, P.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Das, B. K.

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
[Crossref]

S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
[Crossref]

S. Kaushal and B. K. Das, “Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator,” Appl. Opt. 55, 2837–2842 (2016).
[Crossref] [PubMed]

DasGupta, N.

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

Delâge, A.

Densmore, A.

Ding, Z.

Eftekhar, A.

Eftekhar, A. A.

Fan, L.

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Gazman, A.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Giesecke, A. L.

Goodson, K.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

Gu, Y.

Gupta, R. K.

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
[Crossref]

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
[Crossref]

Holzwarth, C. W.

Hosseini, E. S.

Ibrahim, S.

Ikeda, K.

Inoue, T.

Ippen, E. P.

Janosik, N.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Janz, S.

Jayatilleka, H.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, C, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
[Crossref]

Kärtner, F. X.

Kaushal, S.

Kawashima, H.

Khan, M. H.

Khilo, A.

Kimura, T.

Koshino, K.

Kreith, F.

F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer (Cengage Learning, 2012).

Kurz, H.

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lapointe, J.

Leung, Y.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

Li, C.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lipson, M.

Liu, A.

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lu, Z.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
[Crossref]

Luo, L.-W.

Ma, R.

Manglik, R. M.

F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer (Cengage Learning, 2012).

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Matsumaro, K.

Matsuura, H.

Melloni, A.

Mohsin, M.

Morichetti, F.

Murray, K.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
[Crossref]

Namiki, S.

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Neumaier, D.

Nitkowski, A.

Ohtsuka, M.

Orlandi, P.

Otto, M.

Ouyang, J.

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Poitras, C. B.

Polster, R.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Qi, M.

Reano, R. M.

P. Sun and R. M. Reano, “Free-standing silicon-on-insulator strip waveguides for submilliwatt thermo-optic switches,” in Frontiers in Optics, (Optical Society of America, 2010), p. FMH3.
[Crossref]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Rumley, S.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Sagade, A. A.

Schall, D.

Schmid, J. H.

Seki, M.

Shen, H.

Singh, B.

B. Singh and N. Surplice, “The electrical resistivity and resistance-temperature characteristics of thin titanium films,” Thin Solid Films 10, 243–253 (1972).
[Crossref]

Smith, H. I.

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Sorel, M.

Strain, M. J.

Suckow, S.

Suda, S.

Sugaya, T.

Sumi, R.

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

Sun, P.

P. Sun and R. M. Reano, “Free-standing silicon-on-insulator strip waveguides for submilliwatt thermo-optic switches,” in Frontiers in Optics, (Optical Society of America, 2010), p. FMH3.
[Crossref]

Surplice, N.

B. Singh and N. Surplice, “The electrical resistivity and resistance-temperature characteristics of thin titanium films,” Thin Solid Films 10, 243–253 (1972).
[Crossref]

Suzuki, K.

Tanizawa, K.

Tao, J.

Touzelbaev, M.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

Toyama, M.

Vachon, M.

Varghese, L. T.

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Wang, Y.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Wong, S.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

Xu, D.-X.

Xuan, Y.

Yegnanarayanan, S.

Yokoyama, N.

Yoo, S. B.

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Zhang, D.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Zhao, L.

Zheng, C.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Zheng, W.

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Zhu, Z.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Sumi, R. K. Gupta, N. DasGupta, and B. K. Das, “Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

S. Chandran, R. K. Gupta, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 424–432 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

J. Heat Transf. (1)

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transf. 120, 30–36 (1998).
[Crossref]

J. Light. Technol. (2)

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength independent directional couplers for integrated silicon photonics,” J. Light. Technol. 22, 4916–4923 (2017).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Opt. Express (10)

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21, 15706–15718 (2013).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref] [PubMed]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express 25, 7538–7546 (2017).
[Crossref] [PubMed]

A. Atabaki, E. S. Hosseini, A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
[Crossref] [PubMed]

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24, 7871–7878 (2016).
[Crossref] [PubMed]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
[Crossref] [PubMed]

L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. B. Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express 18, 23079–23087 (2010).
[Crossref] [PubMed]

H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express 18, 18067–18076 (2010).
[Crossref] [PubMed]

J. Tao, H. Cai, Y. Gu, and A. Liu, “Demonstration of a compact wavelength tracker using a tunable silicon resonator,” Opt. Express 22, 24104–24110 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

C. Li, W. Zheng, P. Dang, C. Zheng, Y. Wang, and D. Zhang, “Silicon-microring-based thermo-optic non-blocking four-port optical router for optical networks-on-chip,” Opt. Quantum Electron. 48, 552 (2016).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, C, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
[Crossref]

Thin Solid Films (1)

B. Singh and N. Surplice, “The electrical resistivity and resistance-temperature characteristics of thin titanium films,” Thin Solid Films 10, 243–253 (1972).
[Crossref]

Other (4)

“COMSOL Multiphysics version 5.3,” https://www.comsol.com .

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on soi with a 50-μW power consumption,” in Photonics Conference (IPC), 2016 IEEE, (IEEE, 2016), pp. 107–110.
[Crossref]

P. Sun and R. M. Reano, “Free-standing silicon-on-insulator strip waveguides for submilliwatt thermo-optic switches,” in Frontiers in Optics, (Optical Society of America, 2010), p. FMH3.
[Crossref]

F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer (Cengage Learning, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic cross sectional views of two thermo-optic waveguide phase-shifter architectures along with important design parameters: (a) microheater integrated within top-oxide cladding directly above the waveguide, and (b) microheater directly integrated on the slab of the waveguide beneath the top oxide/air cladding. H - device layer thickness, W - waveguide width, h - silicon slab thickness remain after waveguide definition, WH - microheater width, tH - microheater thickness, and dI,II - gap between waveguide and microheater.
Fig. 2
Fig. 2 Allowed guided modes (TE0, TE1, TM0 and HE0) are shown in W-h plane for: (a) oxide top-cladding (b) air top-cladding. The calculations are carried out for H = 220 nm, and tBOX = tTOX = 2 μm at an operating wavelength λ = 1550 nm.
Fig. 3
Fig. 3 Simulation results for estimating thermal sensitivity SH and response time τth for Type-I, Type-II (oxide cladding), and Type-II (air cladding) waveguide phase-shifters (see text for design parameters): (a) calculated steady-state temperature rise (ΔTs) of the waveguide core as a function of electrical power dissipation per unit length of waveguide phase-shifter, and (b) transient temperature rise ΔT(t) normalized to ΔTs as a function time for a unit step-function excitation of input voltage signal to the microheaters.
Fig. 4
Fig. 4 Contour plots of SH in K·μm/mW and τth in μs calculated as a functions of dI,II and h for Type-I (a and d), Type II oxide cladding (b and e) and Type-II air cladding (c and f) heater architectures. The calculations were carried out for TE0 guided mode at λ = 1550 nm (W = 350 nm and H = 220 nm).
Fig. 5
Fig. 5 Calculated optical loss coefficient αh of TE0 mode in dB/mm (λ = 1550 nm) due to interaction between evanescent field and metallic microheater as a function of dI for Type-I and dII for Type II with h as a parameter: (a) Type-I and (b) Type-II (oxide cladding and air cladding). The calculations are carried out for W = 350 nm and H = 220 nm.
Fig. 6
Fig. 6 Microscopic images of the fabricated MZI based 2 × 2 thermo-optic switches integrated with Type-II (air cladding) waveguide phase-shifter: (a) straight-waveguide phase-shifter integrated MZI (S-MZI), and (b) folded waveguide phase-shifter integrated MZI (F-MZI).
Fig. 7
Fig. 7 Wavelength independent transmission characteristics at the bar ports measured for ON-state (maximum transmission) and OFF-state (minimum transmission) switching power levels: (a) S-MZI, and (b) F-MZI.
Fig. 8
Fig. 8 Switching characteristics measured at λ = 1550 nm: (a) transmission at cross and bar ports of an S-MZI, (b) transmission at cross and bar ports of an F-MZI, and (c) transient characteristics measured at bar and cross ports of an S-MZI with the microheater driven by a square pulse (identical transient characteristics for F-MZI).
Fig. 9
Fig. 9 Steady-state and transient temperature characteristics of straight and folded waveguide phase-shifters used in S-MZI and F-MZI, respectively: (a) extracted steady-state temperature ΔTs in the waveguide core as a function of dissipated electrical power per unit length of the phase-shifter (pw), and (b) extracted transient temperature ΔT(t) in the waveguide core as a function of time t.

Tables (1)

Tables Icon

Table 1 The values of various thermal and electrical parameters like specific heat capacity (cv), material mass density (ρm), thermal conductivity (κ), electrical conductivity (σ), thermal expansion coefficient (αc), refractive index (n) used for Ti, Si and SiO2 in calculating thermo-optic effects. They are either taken as default values from the library of COMSOL Multiphysics simulator or from available literatures [21–24].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T π L w = λ 2 ( n eff T ) 1
Δ T s = S H p w
Δ T ( t ) = Δ T s ( 1 e t / τ th )
τ th = h w g w
S H g w = 1
H = S H τ th = Δ T s L w P e τ th = 1 h w H h w = 1
Γ x = | E x | 2 d x d y ( | E x | 2 + | E y | 2 ) d x d y