Abstract

The structure consisting of alternating uniaxial dielectric layers is known to produce reflection of the same polarization as the incident field; e.g., the right-hand elliptically polarized light preserves this right-handedness and ellipticity of polarization at reflection. The parameters permitting the properly-polarized reflectance to exceed 99% in a wide frequency range were considered both analytically and numerically. The mirror with tuned top-layer thickness is shown to have several times less polarization losses than the uniform mirror. The hybrid mirror with metallic bottom layer has a considerably reduced thickness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The circular Bragg phenomenon

Muhammad Faryad and Akhlesh Lakhtakia
Adv. Opt. Photon. 6(2) 225-292 (2014)

Experimental investigation of circular Bragg phenomenon for oblique incidence

Sema Erten, Akhlesh Lakhtakia, and Greg D. Barber
J. Opt. Soc. Am. A 32(5) 764-770 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref] [PubMed]
  2. Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (William Andrew-Elsevier, 2014), 2nd ed.
  3. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494 (2011).
    [Crossref] [PubMed]
  4. N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
    [Crossref]
  5. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
    [Crossref]
  6. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref] [PubMed]
  7. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
    [Crossref]
  8. R. Rajasekharan and A. Roberts, “Optical ’magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures,” Sci. Rep. 5, 10297 (2015).
    [Crossref]
  9. D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
    [Crossref]
  10. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
    [Crossref] [PubMed]
  11. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
    [Crossref]
  12. J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
    [Crossref]
  13. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  14. F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).
    [Crossref]
  15. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
    [Crossref] [PubMed]
  16. L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
    [Crossref]
  17. Y. Zhou, X. T. He, F. L. Zhao, and J. W. Dong, “Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals,” Opt. Lett. 41, 2209–2212 (2016).
    [Crossref] [PubMed]
  18. L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6, 1393–1404 (2016).
    [Crossref]
  19. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
    [Crossref]
  20. M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photon. 6, 225–292 (2014).
    [Crossref]
  21. V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer, 1992).
    [Crossref]
  22. S. Chandrasekhar, Liquid Crystals, Cambridge Monographs on Physics (Cambridge University Press, 1992).
    [Crossref]
  23. I. V. Timofeev and S. Y. Vetrov, “Spectral manifestation of an effective refraction index in a chiral optical medium inside a Fabry-Perot resonator with anisotropic mirrors,” Bull. Russ. Acad. Sci. Phys. 78, 1308–1312 (2014).
    [Crossref]
  24. M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements: 2nd Edition (Imperial College Press, London, UK, 2015).
    [Crossref]
  25. S. Y. Vetrov, M. V. Pyatnov, and I. V. Timofeev, “Surface modes in “photonic cholesteric liquid crystal-phase plate-metal” structure,” Opt. Lett. 39, 2743–2746 (2014).
    [Crossref] [PubMed]
  26. H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
    [Crossref]
  27. C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
    [Crossref]
  28. Z. Ma, S. M. Hanham, Y. Gong, and M. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018).
    [Crossref] [PubMed]
  29. E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. der Phys. und Chemie 138, 628–638 (1869).
    [Crossref]
  30. I. Šolc, “A new kind of double refracting filter,” Czechoslov. J. Phys. 4, 65–66 (1954).
    [Crossref]
  31. G. Joly and N. Isaert, “Some electromagnetic waves in Reusch’s piles. IV. multiple domains of selective reflection,” J. Opt. 17, 211–221 (1986).
    [Crossref]
  32. H. de Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
    [Crossref]
  33. M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun 281, 4812–4823 (2008).
    [Crossref]
  34. I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
    [Crossref]
  35. I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002 (2008).
    [Crossref] [PubMed]
  36. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).
  37. P. Baumeister, Optical Coating Technology (SPIE Publications, 2004).
    [Crossref]
  38. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-Matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [Crossref]
  39. I. V. Timofeev and S. Y. Vetrov, “Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor,” JETP Lett. 104, 380–383 (2016).
    [Crossref]

2018 (1)

2017 (1)

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

2016 (6)

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6, 1393–1404 (2016).
[Crossref]

Y. Zhou, X. T. He, F. L. Zhao, and J. W. Dong, “Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals,” Opt. Lett. 41, 2209–2212 (2016).
[Crossref] [PubMed]

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

I. V. Timofeev and S. Y. Vetrov, “Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor,” JETP Lett. 104, 380–383 (2016).
[Crossref]

2015 (4)

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

R. Rajasekharan and A. Roberts, “Optical ’magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures,” Sci. Rep. 5, 10297 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

2014 (5)

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

I. V. Timofeev and S. Y. Vetrov, “Spectral manifestation of an effective refraction index in a chiral optical medium inside a Fabry-Perot resonator with anisotropic mirrors,” Bull. Russ. Acad. Sci. Phys. 78, 1308–1312 (2014).
[Crossref]

S. Y. Vetrov, M. V. Pyatnov, and I. V. Timofeev, “Surface modes in “photonic cholesteric liquid crystal-phase plate-metal” structure,” Opt. Lett. 39, 2743–2746 (2014).
[Crossref] [PubMed]

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photon. 6, 225–292 (2014).
[Crossref]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

2013 (1)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

2011 (2)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2009 (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

2008 (2)

I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002 (2008).
[Crossref] [PubMed]

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun 281, 4812–4823 (2008).
[Crossref]

2005 (1)

J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
[Crossref]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

2003 (1)

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).
[Crossref]

1999 (1)

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

1986 (1)

G. Joly and N. Isaert, “Some electromagnetic waves in Reusch’s piles. IV. multiple domains of selective reflection,” J. Opt. 17, 211–221 (1986).
[Crossref]

1972 (1)

1954 (1)

I. Šolc, “A new kind of double refracting filter,” Czechoslov. J. Phys. 4, 65–66 (1954).
[Crossref]

1951 (1)

H. de Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[Crossref]

1869 (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. der Phys. und Chemie 138, 628–638 (1869).
[Crossref]

Abbott, D.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002 (2008).
[Crossref] [PubMed]

Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (William Andrew-Elsevier, 2014), 2nd ed.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Alexöpolous, N. G.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE Publications, 2004).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer, 1992).
[Crossref]

Bender, D. A.

Berreman, D. W.

Bhaskaran, M.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

Brener, I.

Brongersma, M. L.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

Burger, A.

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

Campione, S.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Carrasco, E.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals, Cambridge Monographs on Physics (Cambridge University Press, 1992).
[Crossref]

Clem, P. G.

Cui, T.

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

Cui, Y.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

De Silva, L.

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

de Vries, H.

H. de Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[Crossref]

Deng, L.

Ding, F.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Dixit, M.

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun 281, 4812–4823 (2008).
[Crossref]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Dong, J. W.

Engheta, N.

J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
[Crossref]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

Esfandyarpour, M.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

Faryad, M.

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Fumeaux, C.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Garnett, E. C.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Ginn, J.

Gong, Y.

Gutruf, P.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Hanham, S. M.

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

He, X. T.

Headland, D.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Hodgkinson, I. J.

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements: 2nd Edition (Imperial College Press, London, UK, 2015).
[Crossref]

Hong, M.

Hoorfar, A.

J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
[Crossref]

Ihlefeld, J. F.

Isaert, N.

G. Joly and N. Isaert, “Some electromagnetic waves in Reusch’s piles. IV. multiple domains of selective reflection,” J. Opt. 17, 211–221 (1986).
[Crossref]

Jiang, Z. H.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Jimenez Broas, R. F.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Joly, G.

G. Joly and N. Isaert, “Some electromagnetic waves in Reusch’s piles. IV. multiple domains of selective reflection,” J. Opt. 17, 211–221 (1986).
[Crossref]

Jun, Y. C.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Lakhtakia, A.

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photon. 6, 225–292 (2014).
[Crossref]

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun 281, 4812–4823 (2008).
[Crossref]

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

Lin, L.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Liu, S.

Liu, Y.

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494 (2011).
[Crossref] [PubMed]

Liu, Z.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Lu, H.

Luan, K.

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

Ma, D.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Ma, H.

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

Ma, Z.

Mahony, T. S.

Mayer, T. S.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

McCall, M. W.

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements: 2nd Edition (Imperial College Press, London, UK, 2015).
[Crossref]

McGehee, M. D.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

McVay, J.

J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
[Crossref]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

Nirantar, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Pankin, P.

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Pors, A.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

Pyatnov, M. V.

Rahmat-Samii, Y.

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).
[Crossref]

Rajasekharan, R.

R. Rajasekharan and A. Roberts, “Optical ’magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures,” Sci. Rep. 5, 10297 (2015).
[Crossref]

Reusch, E.

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. der Phys. und Chemie 138, 628–638 (1869).
[Crossref]

Roberts, A.

R. Rajasekharan and A. Roberts, “Optical ’magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures,” Sci. Rep. 5, 10297 (2015).
[Crossref]

Rudakova, N.

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

Schwarz, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Sinclair, M. B.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Šolc, I.

I. Šolc, “A new kind of double refracting filter,” Czechoslov. J. Phys. 4, 65–66 (1954).
[Crossref]

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Sriram, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Timofeev, I.

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

Timofeev, I. V.

I. V. Timofeev and S. Y. Vetrov, “Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor,” JETP Lett. 104, 380–383 (2016).
[Crossref]

S. Y. Vetrov, M. V. Pyatnov, and I. V. Timofeev, “Surface modes in “photonic cholesteric liquid crystal-phase plate-metal” structure,” Opt. Lett. 39, 2743–2746 (2014).
[Crossref] [PubMed]

I. V. Timofeev and S. Y. Vetrov, “Spectral manifestation of an effective refraction index in a chiral optical medium inside a Fabry-Perot resonator with anisotropic mirrors,” Bull. Russ. Acad. Sci. Phys. 78, 1308–1312 (2014).
[Crossref]

Tsitsas, N.

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

Valagiannopoulos, C.

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

Vetrov, S.

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

Vetrov, S. Y.

I. V. Timofeev and S. Y. Vetrov, “Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor,” JETP Lett. 104, 380–383 (2016).
[Crossref]

S. Y. Vetrov, M. V. Pyatnov, and I. V. Timofeev, “Surface modes in “photonic cholesteric liquid crystal-phase plate-metal” structure,” Opt. Lett. 39, 2743–2746 (2014).
[Crossref] [PubMed]

I. V. Timofeev and S. Y. Vetrov, “Spectral manifestation of an effective refraction index in a chiral optical medium inside a Fabry-Perot resonator with anisotropic mirrors,” Bull. Russ. Acad. Sci. Phys. 78, 1308–1312 (2014).
[Crossref]

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Wendt, J. R.

Werner, D. H.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Withayachumnankul, W.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Wright, J. B.

Wu, Q.

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements: 2nd Edition (Imperial College Press, London, UK, 2015).
[Crossref]

Wu, Q. H.

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

Xie, J.

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Yang, F.

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yun, S.

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

Zalevsky, Z.

Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (William Andrew-Elsevier, 2014), 2nd ed.

Zhang, L.

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494 (2011).
[Crossref] [PubMed]

Zhao, F. L.

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Zhou, P.

Zhou, Y.

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Acta Crystallogr. (1)

H. de Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[Crossref]

Adv. Opt. Photon. (1)

Ann. der Phys. und Chemie (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. der Phys. und Chemie 138, 628–638 (1869).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Lin, Z. H. Jiang, D. Ma, S. Yun, Z. Liu, D. H. Werner, and T. S. Mayer, “Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase,” Appl. Phys. Lett. 108, 171902 (2016).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

Bull. Russ. Acad. Sci. Phys. (2)

N. Rudakova, I. Timofeev, P. Pankin, and S. Vetrov, “Polarization-preserving anisotropic mirror on the basis of metal-dielectric nanocomposite,” Bull. Russ. Acad. Sci. Phys. 81, 10–14 (2017).
[Crossref]

I. V. Timofeev and S. Y. Vetrov, “Spectral manifestation of an effective refraction index in a chiral optical medium inside a Fabry-Perot resonator with anisotropic mirrors,” Bull. Russ. Acad. Sci. Phys. 78, 1308–1312 (2014).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494 (2011).
[Crossref] [PubMed]

Czechoslov. J. Phys. (1)

I. Šolc, “A new kind of double refracting filter,” Czechoslov. J. Phys. 4, 65–66 (1954).
[Crossref]

IEEE Trans. Antennas Propag. (1)

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).
[Crossref]

J. Appl. Phys. (1)

C. Valagiannopoulos, N. Tsitsas, A. Lakhtakia, and A. Burger, “Pockels cover for switchable control of the reflection from a grounded, isotropic, lossy dielectric slab,” J. Appl. Phys. 117, 083105 (2015).
[Crossref]

J. Opt. (1)

G. Joly and N. Isaert, “Some electromagnetic waves in Reusch’s piles. IV. multiple domains of selective reflection,” J. Opt. 17, 211–221 (1986).
[Crossref]

J. Opt. Soc. Am. (1)

JETP Lett. (1)

I. V. Timofeev and S. Y. Vetrov, “Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor,” JETP Lett. 104, 380–383 (2016).
[Crossref]

Nano Lett. (1)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref] [PubMed]

Opt. Commun (1)

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun 281, 4812–4823 (2008).
[Crossref]

Opt. Commun. (1)

I. J. Hodgkinson, A. Lakhtakia, Q. H. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 1–6 (2009).
[Crossref]

Radio Sci. (1)

J. McVay, A. Hoorfar, and N. Engheta, “Peano high-impedance surfaces,” Radio Sci. 40, 1–9 (2005).
[Crossref]

Sci. Rep. (1)

R. Rajasekharan and A. Roberts, “Optical ’magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures,” Sci. Rep. 5, 10297 (2015).
[Crossref]

Sci. Reports (1)

H. Ma, Y. Liu, K. Luan, and T. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Reports 6, 39390 (2016).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Other (6)

Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (William Andrew-Elsevier, 2014), 2nd ed.

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements: 2nd Edition (Imperial College Press, London, UK, 2015).
[Crossref]

V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer, 1992).
[Crossref]

S. Chandrasekhar, Liquid Crystals, Cambridge Monographs on Physics (Cambridge University Press, 1992).
[Crossref]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).

P. Baumeister, Optical Coating Technology (SPIE Publications, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the PPAM model. The orientations of the vertical (V) and horizontal (H) optical axes are shown separately. N is the number of periods, Λ = 2a is the unit-cell period, a is the thickness of one layer.
Fig. 2
Fig. 2 Spatial field distribution inside the structure shown in Fig. 1 at a frequency corresponding to the stopband center, when the layer thickness is approximately a quarter wavelength. The mirror is (a) magnetic for the vertically polarized radiation and (b) electric for the horizontally polarized one. The first two periods are shown. The standing wave amplitude is constant in each layer and decreases from one layer to another.
Fig. 3
Fig. 3 Refractive indices of the layers for the waves with the vertical (nx) and horizontal (ny) linear polarizations of the electric field for the (a) uniform and (b) tuned PPAM structures. The parameters are ne = 1.70, no = 1.45, and N = 20
Fig. 4
Fig. 4 Frequency dependences of the reflectance in the (a) uniform and (b) tuned PPAM structures as shown in Fig. 3. The frequency is normalized to the first stopband center ωg = πc/2an̄. The blue line shows the total reflection RTotal (the blue curve is not seen in (b) due to its coinciding with the green curve); the green line, PPAM reflection RPPAM; and the red line, common mirror reflection RCM. Phase functions for the (c) uniform and (d) tuned structures. The solid blue line shows the magnetic-mirror phase ϕx + π for vertically polarized light of Fig. 2(a), the dotted magenta line shows the electric-mirror phase ϕy for horizontally polarized light of Fig. 2(b). The parameters for the plots are ne = 1.70, no = 1.45

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 E z 2 + ε ^ ( z ) ω 2 c 2 E 2 = 0 ,
ε ^ V = [ ε o 0 0 0 ε e 0 0 0 ε z ] , ε ^ H = [ ε e 0 0 0 ε o 0 0 0 ε z ] .
| r N | 2 = | CU N 1 AU N 1 U N 2 | 2 = | C | 2 | C | 2 + ( sin K Λ sin N K Λ ) 2 ,
A = e i k e z a [ cos k o z a + 1 2 i ( k o z k e z + k e z k o z ) sin k o z a ] , C = e i k e z a [ 1 2 i ( k o z k e z k e z k o z ) sin k o z a ] , D = e i k e z a [ cos k o z a 1 2 i ( k o z k e z + k e z k o z ) sin k o z a ] ,
| r N | 2 = 1 1 + 4 q 2 ( q 1 + N q 1 N ) 2 1 4 q 2 N ,
N ln 4 ln T min 2 n ¯ Δ n .