Abstract

We propose 400-Gb/s (16 × 25 Gb/s) optical transmitter and receiver modules for on-board interconnects using polymer waveguide (PWG) arrays. Four four-channel vertical cavity surface emitting laser and PIN photodiode arrays are used in the optical transmitter and receiver modules. A 16-channel PWG array with a length of 140 mm and a pitch of 62.5 μm is used as a short-reach optical signal transmission medium in the module. The 25-Gb/s optical eye diagrams of the all output channels utilize PWG transmissions and exhibit good performance in the transmitter module, with a signal-to-noise ratio (SNR) of over 8.01, peak-to-peak time jitter below 11.70 ps, and mask margin of over 31.5%. In the best-performance channel of the receiver module, the peak-to-peak time jitter and SNR of the eye diagram are 10.34 ps and 10.76, respectively, and the receiver sensitivity is approximately −2.6-dBm under a bit error rate of 10−12. The optical transmitter and receiver modules utilizing PWG transmissions were designed and fabricated to realize 400-Gb/s on-board interconnects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
100-Gbps CMOS transceiver for multilane optical backplane system with a 1.3 cm2 footprint

Takashi Takemoto, Fumio Yuki, Hiroki Yamashita, Shinji Tsuji, Yong Lee, Koichiro Adachi, Kazunori Shinoda, Yasunobu Matsuoka, Kenji Kogo, Shinji Nishimura, Masaaki Nido, Masahiko Namiwaka, Taro Kaneko, Takara Sugimoto, and Kazuhiko Kurata
Opt. Express 19(26) B777-B783 (2011)

High-efficiency and stable optical transmitter using VCSEL-direct-bonded connector for optical interconnection

Do-Won Kim, Tae-Woo Lee, Mu Hee Cho, and Hyo-Hoon Park
Opt. Express 15(24) 15767-15775 (2007)

2 Gbit/s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

Xingle Wang, Fouad Kiamilev, Ping Gui, Xiaoqing Wang, Jeremy Ekman, Yongrong Zuo, Jason Blankenberg, and Michael Haney
Appl. Opt. 45(18) 4355-4365 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightwave Technol. 22(9), 2021–2033 (2004).
    [Crossref]
  2. C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
    [Crossref]
  3. W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
    [Crossref]
  4. H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
    [Crossref]
  5. F. Karinou, N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightwave Technol. 34(12), 2897–2904 (2016).
    [Crossref]
  6. M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.
  7. J. Ingham, “Future of short-reach optical interconnects based on MMF technologies,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper Tu2B-1.
  8. C. P. Caputo, P. J. Decker, and S. E. Ralph, “VCSEL-based 100m 25Gb/s plastic optical fiber links,” in Opt. Fiber Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (Optical Society of America, 2011), paper OWB2.
    [Crossref]
  9. J. Tatum, “The Evolution of 850nm VCSELs from 10Gb/s to 25 and 56Gb/s,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2014), paper Th3C-1.
  10. N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
    [Crossref]
  11. J. Sangirov, G.-C. Joo, J.-S. Choi, D.-H. Kim, B.-S. Yoo, I. A. Ukaegbu, N. T. H. Nga, J.-H. Kim, T.-W. Lee, M. H. Cho, and H.-H. Park, “40 Gb/s optical subassembly module for a multi-channel bidirectional optical link,” Opt. Express 22(2), 1768–1783 (2014).
    [Crossref] [PubMed]
  12. T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010).
    [Crossref] [PubMed]
  13. M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
    [Crossref]
  14. K. Schmidtke, F. Flens, A. Worrall, R. Pitwon, F. Betschon, T. Lamprecht, and R. Krahenbuhl, “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightwave Technol. 31(24), 3970–3975 (2013).
    [Crossref]
  15. M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.
  16. J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
    [Crossref]
  17. T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.
  18. H. Numata, M. Tokunari, and J. B. Heroux, “60-Micrometer pitch polymer waveguide array attached active optical flex,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper W1A.5.
    [Crossref]
  19. H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.
  20. T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.
  21. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  22. Y. Morimoto and T. Ishigure, “Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors,” Opt. Express 24(4), 3550–3561 (2016).
    [Crossref] [PubMed]

2016 (4)

2014 (2)

2013 (1)

2012 (2)

2010 (3)

T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010).
[Crossref] [PubMed]

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[Crossref]

2004 (1)

Absi, P.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Bamiedakis, N.

Bergman, K.

Betschon, F.

Brad, S.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Brown, C. T.

Caputo, C. P.

C. P. Caputo, P. J. Decker, and S. E. Ralph, “VCSEL-based 100m 25Gb/s plastic optical fiber links,” in Opt. Fiber Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (Optical Society of America, 2011), paper OWB2.
[Crossref]

Chen, H.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Chen, J.

Cho, H.

Cho, M. H.

Choi, J.-S.

Daikuhara, O.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Daly, A.

De Coster, J.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

De Heyn, P.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Decker, P. J.

C. P. Caputo, P. J. Decker, and S. E. Ralph, “VCSEL-based 100m 25Gb/s plastic optical fiber links,” in Opt. Fiber Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (Optical Society of America, 2011), paper OWB2.
[Crossref]

Edwards, T. J.

Flens, F.

Gappa, R.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Gill, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Hashim, A.

Heroux, J. B.

H. Numata, M. Tokunari, and J. B. Heroux, “60-Micrometer pitch polymer waveguide array attached active optical flex,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper W1A.5.
[Crossref]

Horimoto, A.

M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
[Crossref]

Ide, S.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Immonen, M.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Ingham, J.

J. Ingham, “Future of short-reach optical interconnects based on MMF technologies,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper Tu2B-1.

Ishigure, T.

Joo, G.-C.

Kabayashi, M.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

Kamalov, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Kapur, P.

Karinou, F.

Kim, D.-H.

Kim, J.-H.

Kitazoe, K.

M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
[Crossref]

Koley, B.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Komiyama, T.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Kondou, T.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

Krahenbuhl, R.

Lam, C. F.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Lamprecht, T.

Lee, T.-W.

Lei, W.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Lepage, G.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Liu, H.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Michal, R.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Miki, Y.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

Mori, T.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Morimoto, Y.

Moriya, K.

M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
[Crossref]

Nasu, H.

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[Crossref]

H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.

Nekado, Y.

H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.

Neumeyr, C.

Nga, N. T. H.

Nishimura, N.

H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.

Nitta, Y.

Numata, H.

H. Numata, M. Tokunari, and J. B. Heroux, “60-Micrometer pitch polymer waveguide array attached active optical flex,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper W1A.5.
[Crossref]

Ortsiefer, M.

Pantouvaki, M.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Park, H.-H.

Penty, R. V.

Pitwon, R.

Press, M.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Ralph, S. E.

C. P. Caputo, P. J. Decker, and S. E. Ralph, “VCSEL-based 100m 25Gb/s plastic optical fiber links,” in Opt. Fiber Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (Optical Society of America, 2011), paper OWB2.
[Crossref]

Sangirov, J.

Saraswat, K. C.

Schmidtke, K.

Serbay, M.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Shiraishi, T.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

Singh, M.

M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
[Crossref]

Srinivasan, A.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Stojanovic, N.

Sugawara, M.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

Tanaka, K.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Tang, H.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Tatum, J.

J. Tatum, “The Evolution of 850nm VCSELs from 10Gb/s to 25 and 56Gb/s,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2014), paper Th3C-1.

Taubenblatt, M. A.

Tokunari, M.

H. Numata, M. Tokunari, and J. B. Heroux, “60-Micrometer pitch polymer waveguide array attached active optical flex,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper W1A.5.
[Crossref]

Uemura, T.

H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.

Ukaegbu, I. A.

Van Campenhout, J.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Vasil’ev, P. P.

Verheyen, P.

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

Wang, H.

White, I. H.

Worrall, A.

Wu, J.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Yagisawa, T.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Yan, H. J.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Yoo, B.-S.

Zhang, R.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

Zhang, W.

Zhao, X.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Zhu, L. X.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

IEEE Commun. Mag. (1)

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[Crossref]

J. Lightwave Technol. (7)

F. Karinou, N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightwave Technol. 34(12), 2897–2904 (2016).
[Crossref]

W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
[Crossref]

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
[Crossref]

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightwave Technol. 22(9), 2021–2033 (2004).
[Crossref]

K. Schmidtke, F. Flens, A. Worrall, R. Pitwon, F. Betschon, T. Lamprecht, and R. Krahenbuhl, “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightwave Technol. 31(24), 3970–3975 (2013).
[Crossref]

J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
[Crossref]

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[Crossref]

Opt. Commun. (1)

M. Singh, K. Kitazoe, K. Moriya, and A. Horimoto, “High reliability and high density graded index polymer waveguides for optical interconnect,” Opt. Commun. 362, 33–35 (2016).
[Crossref]

Opt. Express (3)

Other (9)

M. Pantouvaki, P. De Heyn, R. Michal, P. Verheyen, S. Brad, A. Srinivasan, H. Chen, J. De Coster, G. Lepage, P. Absi, and J. Van Campenhout, “50Gb/s silicon photonics platform for short-reach optical interconnects,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2016), paper Th4H-4.

J. Ingham, “Future of short-reach optical interconnects based on MMF technologies,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper Tu2B-1.

C. P. Caputo, P. J. Decker, and S. E. Ralph, “VCSEL-based 100m 25Gb/s plastic optical fiber links,” in Opt. Fiber Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (Optical Society of America, 2011), paper OWB2.
[Crossref]

J. Tatum, “The Evolution of 850nm VCSELs from 10Gb/s to 25 and 56Gb/s,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2014), paper Th3C-1.

M. Immonen, R. Zhang, M. Press, H. Tang, W. Lei, J. Wu, H. J. Yan, L. X. Zhu, and M. Serbay, “End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers,” in 42nd European Conf. Opt. Commun. (2016), pp. 1154–1156.

T. Yagisawa, T. Shiraishi, M. Sugawara, Y. Miki, T. Kondou, M. Kabayashi, and K. Tanaka, “40-Gb/s card-edge connected optical transceiver using novel high-speed connector,” in IEEE 65th Electron. Compon. Technol. Conf. (2015), pp. 783–788.

H. Numata, M. Tokunari, and J. B. Heroux, “60-Micrometer pitch polymer waveguide array attached active optical flex,” in Opt. Fiber Commun. Conf. Exhib. (Optical Society of America, 2017), paper W1A.5.
[Crossref]

H. Nasu, N. Nishimura, Y. Nekado, and T. Uemura, “Polymer waveguide-coupled solderable optical modules for high-density optical interconnects,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1087–1092.

T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in IEEE 66th Electron. Compon. Technol. Conf. (2016), pp. 1099–1104.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the 400-Gb/s optical transmitter or receiver modules.
Fig. 2
Fig. 2 Structure of the PWG array.
Fig. 3
Fig. 3 Schematic of the light beam from the VCSEL to the PWG or from the PWG to the PD.
Fig. 4
Fig. 4 Experimental setup for the eye diagrams of the optical transmitter module.
Fig. 5
Fig. 5 Optical eye diagrams from 16 25-Gb/s channels of the 400-Gb/s optical transmitter module.
Fig. 6
Fig. 6 Experimental setup for the eye diagrams of the optical receiver module.
Fig. 7
Fig. 7 (a) The optical eye diagram from the QSFP28 module, (b) the electrical eye diagrams from 16 25-Gb/s channels in the 400-Gb/s optical receiver module, and (c) the electrical eye diagram showing the best-performing channel without the CDR function.
Fig. 8
Fig. 8 BER vs. input optical power for PWG transmission for the best-performing channel.

Tables (1)

Tables Icon

Table 1 Comparison of the Performance of the Work Presented Herein with that of the Previously Reported Optical Transceiver Modules for On-Board Interconnects Using Polymer Waveguide (PWG) Arrays