Abstract

We demonstrate a very simple and impactful scheme based on parallel electrical relay control of conventional diodes without wavelength locking for the resonant pumping of high power fiber lasers. This scheme enhances the efficiency and reduces the thermal load on the laser. The deleterious effects due to drift in emission wavelength of the diodes from the peak absorption of the gain medium with varying output power is avoided. We also demonstrate that the proposed technique performs comparably with pumping with wavelength locked laser diodes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system

Daniel W. E. Noom, Stefan Witte, Jonas Morgenweg, Robert K. Altmann, and Kjeld S. E. Eikema
Opt. Lett. 38(16) 3021-3023 (2013)

High-power noise-like pulse generation using a 1.56-µm all-fiber laser system

Shih-Shian Lin, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 23(14) 18256-18268 (2015)

High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes

Hiroki Tanaka, Shogo Fujita, and Fumihiko Kannari
Appl. Opt. 57(21) 5923-5928 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  3. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  4. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  5. L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Temperature dependence of a high-power ytterbium-doped fiber amplifier operating at 1060 nm and 1080 nm,” 14th OptoElectronics and Communications Conference, Hong Kong, (2009), pp. 1–2.
  6. L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

2015 (1)

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

2011 (1)

2010 (2)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

Bansal, L.

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Clarkson, W. A.

Eidam, T.

Headley, C.

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Jansen, F.

Jauregui, C.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Kremp, T.

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Limpert, J.

Nilsson, J.

Otto, H. J.

Richardson, D. J.

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Schmidt, O.

Schreiber, T.

Stutzki, F.

Sullivan, S.

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Supradeepa, V. R.

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Tünnermann, A.

Wirth, C.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Proc. SPIE (1)

L. Bansal, V. R. Supradeepa, T. Kremp, S. Sullivan, and C. Headley, “High power cladding mode stripper,” Proc. SPIE 9344, 93440F (2015).

Other (2)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Temperature dependence of a high-power ytterbium-doped fiber amplifier operating at 1060 nm and 1080 nm,” 14th OptoElectronics and Communications Conference, Hong Kong, (2009), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Fraction of Unabsorbed pump power in 10m of Yb-doped double clad fiber with a net peak absorption of ~17dB (b) Variation of pump laser wavelength as the power is increased (change in drive current).
Fig. 2
Fig. 2 (a) Schematic of the modified diode drive scheme. (b) Schematic for the laser diode-relay connection.
Fig. 3
Fig. 3 (a) Fraction of Unabsorbed pump power in Yb-doped double clad fiber with a peak total absorption of ~17dB (b) Variation of pump laser wavelength as the power is increased (change in diode number).
Fig. 4
Fig. 4 Comparison of unabsorbed pump fraction in a length of Yb-doped fiber with a peak total absorption of 17dB for different schemes.
Fig. 5
Fig. 5 (a) Plot comparing output power vs. input power in an amplifier configuration for the two drive schemes (b) Plot showing temperature rise of the cladding power stripper for the two drive schemes.
Fig. 6
Fig. 6 (a) Plot showing the magnitude of unabsorbed pump power with variation in bandwidth and center wavelength in a medium with 17dB of peak absorption (10m of 1.7dB/m) (b) Plot showing the length of active fiber required(in meters) for different values of center wavelength and bandwidth.