Abstract

We numerically demonstrate the transient characters of all-dielectric magnetic metamaterials. A two-step excitation configuration is performed to investigate the constitution of the output electric field. The transient electromagnetic responses of the metamaterial indicate that the output electromagnetic waves consist of two parts: the directly transmitted component and the radiated component. The unity reflection phenomenon originates from the destructive interference between the above two parts of electromagnetic waves. We also observe the formation process of unity reflection, which indicates the metamaterial’s reflectivity is determined by resonance rather than geometric configuration. The principles provide a new insight into properties such as negative refraction, directional scattering and perfect absorption of metamaterials or traditional film materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetic mirrors without metals

Sheng Liu, Michael B. Sinclair, Thomas S. Mahony, Young Chul Jun, Salvatore Campione, James Ginn, Daniel A. Bender, Joel R. Wendt, Jon F. Ihlefeld, Paul G. Clem, Jeremy B. Wright, and Igal Brener
Optica 1(4) 250-256 (2014)

Planar all-silicon metamaterial for terahertz applications

Sergey L. Prosvirnin, Victor A. Dmitriev, Yeugenii M. Kuleshov, and Vyacheslav V. Khardikov
Appl. Opt. 54(13) 3986-3990 (2015)

Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region

Xufeng Jing, Rui Xia, Weimin Wang, Ying Tian, and Zhi Hong
J. Opt. Soc. Am. A 33(5) 954-961 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
    [Crossref]
  2. B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
    [Crossref] [PubMed]
  3. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
    [Crossref]
  4. J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
    [Crossref]
  5. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  6. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  7. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  8. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  9. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
    [Crossref] [PubMed]
  10. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  11. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
    [Crossref] [PubMed]
  12. R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
    [Crossref] [PubMed]
  13. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  14. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  15. L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
    [Crossref]
  16. A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
    [Crossref]
  17. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
    [Crossref]
  18. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  19. B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
    [Crossref]
  20. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  21. Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
    [Crossref]
  22. Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
    [Crossref]
  23. Y. Ding and R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15(2), 680–694 (2007).
    [Crossref] [PubMed]
  24. Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5(3), 289–294 (2018).
    [Crossref]
  25. W. Liu, “Generalized Magnetic Mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
    [Crossref] [PubMed]
  26. S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
    [Crossref]
  27. W. Liu and A. E. Miroshnichenko, “Scattering invisibility with free‐space field enhancement of all‐dielectric nanoparticles,” Laser Photonics Rev. 11(6), 1700103 (2017).
    [Crossref]
  28. X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
    [Crossref]
  29. X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
    [Crossref]
  30. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 94(27), 65–68 (1947).
  31. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
    [Crossref]
  32. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
    [Crossref] [PubMed]

2018 (2)

Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5(3), 289–294 (2018).
[Crossref]

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

2017 (2)

W. Liu, “Generalized Magnetic Mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref] [PubMed]

W. Liu and A. E. Miroshnichenko, “Scattering invisibility with free‐space field enhancement of all‐dielectric nanoparticles,” Laser Photonics Rev. 11(6), 1700103 (2017).
[Crossref]

2016 (8)

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

2015 (4)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

2014 (3)

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
[Crossref]

2013 (1)

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

2012 (1)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

2011 (1)

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

2009 (2)

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

2008 (2)

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

2007 (3)

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Y. Ding and R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15(2), 680–694 (2007).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

2003 (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 94(27), 65–68 (1947).

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Albella, P.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Baker-Jarvis, J.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

Basharin, A. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Bender, D. A.

Berding, M.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

Bi, K.

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Brener, I.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Byun, S. J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Campione, S.

Chen, Y.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Choi, S. B.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Clem, P. G.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Cummer, S. A.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Ding, Y.

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Economou, E. N.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Fedotov, V.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Ginn, J.

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Gong, Y.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Gonzaga, L.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Hanham, S. M.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

Hong, M.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hopkins, B.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Huang, X.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Hwang, S. W.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Ihlefeld, J. F.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jun, Y. C.

Kabos, P.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

Kafesaki, M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Kang, L.

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Kay, A. Y.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Khardikov, V.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
[Crossref]

Ko, Y. H.

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kravchenko, I. I.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Kruk, S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Kyoung, J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Lan, C.

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 94(27), 65–68 (1947).

Li, B.

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, H.

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

Li, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, W.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Liu, S.

Liu, W.

W. Liu and A. E. Miroshnichenko, “Scattering invisibility with free‐space field enhancement of all‐dielectric nanoparticles,” Laser Photonics Rev. 11(6), 1700103 (2017).
[Crossref]

W. Liu, “Generalized Magnetic Mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref] [PubMed]

Liu, X.

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Liu, Z.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Lu, H. T.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Ma, Z.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Magnusson, R.

Mahony, T. S.

Maier, S. A.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Miroshnichenko, A.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Miroshnichenko, A. E.

W. Liu and A. E. Miroshnichenko, “Scattering invisibility with free‐space field enhancement of all‐dielectric nanoparticles,” Laser Photonics Rev. 11(6), 1700103 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Neshev, D. N.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Ng, B.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Pan, P.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Park, D. J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Popa, B.-I.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Prosvirnin, S.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Qu, S.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Sinclair, M. B.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Slovick, B.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Soukoulis, C. M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Toh, Y. T.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Wang, J.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Wang, X.

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

Wang, Y.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wei, L.

L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
[Crossref]

Wei, X.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Wendt, J. R.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wright, J. B.

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Xu, Z.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Yang, Y.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Yu, Z.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Yu, Z. G.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

Zhang, F.

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, G.

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zheludev, N.

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Zhou, J.

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

ACS Photonics (2)

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Adv. Opt. Mater. (1)

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near‐zero index: optical magnetic mirror for field enhancement and subwavelength imaging applications,” Adv. Opt. Mater. 3(12), 1719–1725 (2015).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Phys. Lett. (3)

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

X. Wang, G. Zhang, H. Li, and J. Zhou, “Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule,” Appl. Phys. Lett. 112(17), 174103 (2018).
[Crossref]

X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Appl. Phys. Lett. 109(6), 062902 (2016).
[Crossref]

Chin. Phys. B (1)

L. Wei, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23(4), 047806 (2014).
[Crossref]

IEEE. Trans. Antenn. Propag (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE. Trans. Antenn. Propag 51(10), 2596–2603 (2003).
[Crossref]

J. Appl. Phys. (1)

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

J. Inst. Electr. Eng. Part III: Radio Commun. Eng. (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 94(27), 65–68 (1947).

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. S. Schwanecke, V. Fedotov, V. Khardikov, S. Prosvirnin, Y. Chen, and N. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D Appl. Phys. 49(19), 195101 (2016).
[Crossref]

Laser Photonics Rev. (1)

W. Liu and A. E. Miroshnichenko, “Scattering invisibility with free‐space field enhancement of all‐dielectric nanoparticles,” Laser Photonics Rev. 11(6), 1700103 (2017).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (1)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Optica (2)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B Condens. Matter Mater. Phys. 88(16), 165116 (2013).
[Crossref]

F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195119 (2009).
[Crossref]

Phys. Rev. Lett. (5)

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

W. Liu, “Generalized Magnetic Mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99(1), 017401 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
[Crossref]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The designed all-dielectric metamaterial MM and its unit cell with cube size a and lattice constant p.
Fig. 2
Fig. 2 (a) Plot of simulated transmission (green curve), reflection (blue curve) and absorption (red curve) for metamaterial MM. (b) Magnetic field distribution (absolute value |(H)|) in the unit cell at resonant frequency 10.2 GHz. (c) Far-field radiation pattern of a dielectric resonator at 10.2 GHz. (d) The calculated phase of the output electric field (x component Ex).
Fig. 3
Fig. 3 Calculated electric-field transients (x component Ex) at input port (green curve) and output port (blue curve). The highlighted region and the insert shows the transient electric response for metamaterial MM as the excitation is removed. The scale of the electric field x component Ex was normalized to the incident electric field amplitude.
Fig. 4
Fig. 4 The output electric-field transients (x component Ex) at 10.2 GHz (b) and 10.1 GHz (a) and 10.3 GHz (c).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε 1 ( 1+ 3 v f F(θ)+2 b e F(θ)- b e - v f )
μ eff = μ 1 ( 1+ 3 v f F(θ)+2 b m F(θ)- b m - v f )
b e = ε 1 / ε 2 , b m = μ 1 / μ 2
v f = 4π r 3 3 p 3
F(θ)= 2(sinθ-θcosθ) ( θ 2 -1)sinθ+θcosθ
θ= k 0 r ε 2 μ 2 =2πfr ε 2 μ 2 /c
E inc = E 0 e i( k zωt) ,
E t = t 0 E 0 e i( k zωt+ φ 0 ) ,
E rd = E rd (ω) e i[ k zωt+ φ 1 (ω)] ,
E total =[ t 0 E 0 e i φ 0 + E rd (ω) e i φ 1 (ω) ] e i[ k zωt] ,
E total =A[ E rd (ω) e iφ(ω) + t 0 E 0 ]
| E total |=A[ E rd (ω)cosφ(ω)+ t 0 E 0 ].