Abstract

The detection of faint stellar companions requires high contrast techniques such as coronagraphy. To achieve such high contrast coronagraphs must work with the aid of adaptive optics or be mounted on space telescopes. We propose a new coronagraphic technique that consists of the digital processing of non-coronagraphic images. The only requirement is a priori knowledge of the telescope amplitude point spread function. This digital coronagraph algorithm presents the advantage that it avoids problems associated with manufacture, implementation, and alignment of optical coronagraphs. The digital coronagraph algorithm is successfully checked with laboratory generated images. Moreover, numerical simulations show that the digital coronagraph presents contrast curves similar to that of the optical coronagraph. Finally, speckle noise can be cancelled out as effectively as in optical coronagraphs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging

Miguel A. Cagigas, Pedro J. Valle, and Manuel P. Cagigal
Opt. Express 21(10) 12744-12756 (2013)

Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration

D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, and N. O’Brien
Opt. Express 17(3) 1902-1918 (2009)

Implementing focal-plane phase masks optimized for real telescope apertures with SLM-based digital adaptive coronagraphy

Jonas Kühn, Polychronis Patapis, Garreth Ruane, and Xin Lu
Opt. Express 25(14) 16686-16700 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
    [Crossref]
  2. D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
    [Crossref]
  3. J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
    [Crossref]
  4. M. J. Kuchner and W. A. Traub, “A coronagraph with a band-limited mask for finding terrestrial planets,” Astrophys. J. 570(2), 900–908 (2002).
    [Crossref]
  5. M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
    [Crossref]
  6. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
    [Crossref]
  7. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
    [Crossref] [PubMed]
  8. V. F. Canales and M. P. Cagigal, “Gain estimate for exoplanet detection with adaptive optics,” Astron. Astrophys. 145, 445–449 (2000).
  9. J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
    [Crossref] [PubMed]
  10. C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
    [Crossref]
  11. D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
    [Crossref]
  12. R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
    [Crossref]
  13. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
    [Crossref]
  14. M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
    [Crossref] [PubMed]
  15. J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
    [Crossref]
  16. R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
    [Crossref]

2015 (1)

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

2013 (1)

2012 (1)

R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

2010 (1)

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref] [PubMed]

2007 (5)

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[Crossref] [PubMed]

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

2006 (2)

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

2005 (1)

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

2002 (1)

M. J. Kuchner and W. A. Traub, “A coronagraph with a band-limited mask for finding terrestrial planets,” Astrophys. J. 570(2), 900–908 (2002).
[Crossref]

2001 (1)

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

2000 (2)

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

V. F. Canales and M. P. Cagigal, “Gain estimate for exoplanet detection with adaptive optics,” Astron. Astrophys. 145, 445–449 (2000).

Aime, C.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Artigau, E.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

Berkefeld, T.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Boccaletti, A.

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Burruss, R.

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref] [PubMed]

Cagigal, M. P.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref] [PubMed]

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

V. F. Canales and M. P. Cagigal, “Gain estimate for exoplanet detection with adaptive optics,” Astron. Astrophys. 145, 445–449 (2000).

Cagigas, M. A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref] [PubMed]

Canales, V. F.

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

V. F. Canales and M. P. Cagigal, “Gain estimate for exoplanet detection with adaptive optics,” Astron. Astrophys. 145, 445–449 (2000).

Clénet, Y.

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Collins, B.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Crepp, J. R.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Doyon, R.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Femenía, B.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Ferrari, A.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Galicher, R.

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Ge, J.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Guyon, O.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Jolissaint, L.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Koresko, C. D.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Kuchner, M. J.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

M. J. Kuchner and W. A. Traub, “A coronagraph with a band-limited mask for finding terrestrial planets,” Astrophys. J. 570(2), 900–908 (2002).
[Crossref]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Labeyrie, A.

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Lafreniere, D.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

Lafrenière, D.

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Larkin, J.

R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

López, R.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Macintosh, B.

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Makidon, R. B.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Marois, C.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Martinache, F.

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Mawet, D.

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref] [PubMed]

Nadeau, D.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Oscoz, A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Oti, J. E.

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

Pérez-Garrido, A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Pérez-Prieto, J. A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Pluzhnik, E. A.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Prieto-Blanco, X.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Pueyo, L.

R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

Rebolo, R.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Riaud, D.

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Ridgway, S. T.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Rodríguez, L. F.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Rouan, D.

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Serabyn, E.

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref] [PubMed]

Sivaramakrishnan, A.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Soummer, R.

R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Traub, W. A.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[Crossref] [PubMed]

M. J. Kuchner and W. A. Traub, “A coronagraph with a band-limited mask for finding terrestrial planets,” Astrophys. J. 570(2), 900–908 (2002).
[Crossref]

Trauger, J. T.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[Crossref] [PubMed]

Valle, P. J.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref] [PubMed]

Van den Heuvel, A. D.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Villo-Pérez, I.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Woodruff, R. A.

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

Astron. Astrophys. (1)

V. F. Canales and M. P. Cagigal, “Gain estimate for exoplanet detection with adaptive optics,” Astron. Astrophys. 145, 445–449 (2000).

Astrophys. J. (9)

O. Guyon, E. A. Pluzhnik, R. Galicher, F. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanets imaging with a phase-induced amplitude apodization coronagraph - I. principle,” Astrophys. J. 622(1), 744–758 (2005).
[Crossref]

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

M. J. Kuchner and W. A. Traub, “A coronagraph with a band-limited mask for finding terrestrial planets,” Astrophys. J. 570(2), 900–908 (2002).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

R. Soummer, L. Pueyo, and J. Larkin, “Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Astrophys. J. Suppl. Ser. (1)

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Nature (2)

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref] [PubMed]

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Publ. Astron. Soc. Pac. (1)

D. Rouan, D. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Lyot coronagraph. (a) Entrance pupil, (b) coronagraphic plane, and (c) Lyot.
Fig. 2
Fig. 2 One-dimensional summary for the OC (left) and the DCA (right). Entrance pupil plane (a) is omitted. At the coronagraphic plane, b is the APSF, b1 the coronagraphic mask, b2 the masked APSF, b0 the star PSF and bS the sign map. At the Lyot plane, c is the field, c1 the Lyot stop and c2 the filtered field. The coronagraphic image d is at final plane (unit intensity corresponds to the non-coronagraphic star image peak).
Fig. 3
Fig. 3 Left: sign map given by Eq. (2) for a clear pupil (white regions represent value + 1 and black ones value −1). Right: super-Gaussian Lyot stop given by Eq. (6); pupil border is shown in green.
Fig. 4
Fig. 4 Left column: field and log-intensity profiles at the same planes of Fig. 2 for the host star (black line) and the companion (blue line) in a digital coronagraph. Right column: outline of the dissimilar spatial spread of both contributions at the Lyot plane. The companion is 106 times fainter than the host star and is placed at 13 λ/D.
Fig. 5
Fig. 5 Contrast curve for the OC (red line) and for the DCA (blue line) with the same coronagraphic mask. Star intensity radial dependence is also shown (black line).
Fig. 6
Fig. 6 The beam is divided by a beam splitter (BS1). In the arm that corresponds to the star, the light reaches a second beam splitter (BS2) with the help of a flat mirror (FLAT 1). In the other arm, the light goes through a phase element (PE) and a neutral filter (NF) and is reflected by FLAT2 to BS2. Both beams are collimated by the spherical mirror SPHE 1 and focused by SPHE 2 to the scientific camera
Fig. 7
Fig. 7 Left: Experimental image of a host star and a companion (encircled) placed at a distance equivalent to 8 λ/D with an intensity 1000 times fainter than that of the host star (the selected scale saturates the central core). Right: the same image after DCA, where the companion stands out over the background.
Fig. 8
Fig. 8 Contrast curves for the OC (red line) and the DCA (blue line) from a series of 200 wavefronts with average Strehl 0.9. Black line shows the star intensity radial dependence.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A( r )= J 1 ( πr )/( πr ) 
S( r )=APSF( r )/| APSF( r ) |,
  A( r ) I( r ) S( r )
A( r ) I( r ) S( r )= I S ( r )+ I C ( r r 0 )   S( r ).
A( r )  I S ( r )  S( r )+ I C ( r r 0 )S( r )/( 2 I S ( r )  ).
SG( ρ;n )=exp( | ρ ρ d σ | n ),
c( r )= I( r ) | M( r ) | 2   I S ( 0 ) ,
c'( r )= I( r ) | M( r ) | 2   I C ( r ) ,
I OC = | A e iϕ ¯  M ¯  L ¯ | 2 ,
I DCA = | | A e iϕ ¯ |S M ¯  L ¯ | 2 ,
I OC | A ¯ M* L ¯ +i Aϕ ¯ M* L ¯ | 2 ,
I OC | A ¯ M* L ¯ | 2 + | Aϕ ¯ M* L ¯ | 2 +2( A ¯ M* L ¯ ) Re( Aϕ ¯ M* L ¯ ),
| A e iϕ ¯ | 2 | A ¯ +i Aϕ ¯ | 2 = | A ¯ | 2 + | Aϕ ¯ | 2 2 A ¯  Im( Aϕ ¯ ),
| A e iϕ ¯ |S| A ¯ |S Im( Aϕ ¯ ).
I DCA | A ¯ M* L ¯ Im( Aϕ ¯ ) M* L ¯ | 2 ,
I DCA | A ¯ M* L ¯ | 2 + | Im( Aϕ ¯ ) M* L ¯ | 2 2( A ¯ M* L ¯ )( Im( Aϕ ¯ ) M* L ¯ ).