Abstract

Since its advent in the 1970s, optical tweezers have been widely deployed as a preferred non-contact technique for manipulating microscale objects. On-chip integrated optical tweezers, which afford significant size, weight, and cost benefits, have been implemented, relying upon near-field evanescent waves. As a result, these tweezers are only capable of manipulation in near-surface regions and often demand high power since the evanescent interactions are relatively weak. We introduce on-chip optical tweezers based on freeform micro-optics, which comprise optical reflectors or refractive lenses integrated on waveguide end facets via two-photon polymerization. The freeform optical design offers unprecedented degrees of freedom to design optical fields with strong three-dimensional intensity gradients, useful for trapping and manipulating suspended particles in an integrated chip-scale platform. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably low trapping threshold power, and the refractive tweezers are particularly useful for multiparticle trapping and interparticle interaction analysis. Our integrated micro-optical tweezers uniquely combine a compact footprint, broadband operation, high trapping efficiency, and scalable integration with planar photonic circuits. This class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Following the first experimental demonstration by Arthur Ashkin [1], optical trapping has become the technology of choice for noncontact manipulation of microscopic objects, with far-reaching impacts on applications ranging from biomechanical characterization to sorting of colloidal particles [215]. Conventional optical tweezers use high-numerical-aperture (NA) lenses to generate a stable gradient trapping potential [2], which entails bulky, costly benchtop instruments. As an alternative, optical fiber-based tweezers have also been realized in the form of two counter aligned fibers or a lensed/tapered fiber [1624]. However, both approaches offer limited control over the optical field, and they are not amenable to large-scale on-chip integration critical to applications such as optical sorting and ion trapping in the context of quantum computing [7].

To resolve this challenge, planar photonic devices such as optical waveguides [2531], plasmonic structures [3235], and optical resonators [3642] have been proposed for on-chip trapping. These devices rely on evanescent waves to produce the optical gradient potential, which only allows 2D particle manipulation in the immediate proximity of the chip surface due to the very short (hundreds of nanometers) decay length of evanescent fields.

In this paper, we demonstrate a new class of on-chip optical tweezers whose functionality is based on waveguide-integrated, freeform micro-optical elements. Freeform optics opens up a large design space for optical wavefront control and has been regarded as a disruptive optical systems technology. However, the development of freeform optics in their bulk incarnation has been hampered by the fabrication challenges of free surface shaping with subwavelength accuracy. Recent developments in two-photon polymerization (TPP) [43], a process capable of on-demand printing of three-dimensional (3D) structures with critical dimensions well below the classical diffraction limit, have opened up a promising route for scalable fabrication of freeform optics—with a miniature form factor amenable to on-chip integration [4446]. We show that freeform micro-optical elements are ideally suited for on-chip optical tweezers benefitting from several unique features. First, this design enables precise positioning of the trap location in the 3D region above the chip and facile adaptations of the trapping potential. Second, the micro-optics are seamlessly integrated with on-chip waveguides and can be readily interfaced with photonic integrated circuits to impart new functionalities such as dynamic tuning and switching of optical traps. In addition, compared to other planar devices that can also be used for free-space outcoupling such as diffractive gratings, plasmonic scatterers, and metasurfaces, freeform reflective or refractive micro-optics offer excellent optical efficiency ($\gt \!95\%$ efficiency from the waveguide to the focal spot) and broadband operation [46]. The high efficiency facilitates a low trapping threshold power, whereas the large spectral bandwidth is useful for quantum state preparation and fluorescence or Raman excitation. Finally, the waveguides can further function as integrated optical monitors, providing real-time information about the motion of trapped particles through the measurement of the backscattered light intensity [20]. In the following, we will present the design, fabrication, and characterization of two embodiments of the on-chip tweezers based on reflective and refractive micro-optics.

 figure: Fig. 1.

Fig. 1. On-chip optical trapping using freeform focusing reflectors. (a) A 3D schematic layout of the chip. (b) $x - z$ cross section of the device illustrating particle trapping at the intersection of two focused beams. (c) The design of the focusing reflectors. (d) FDTD simulated intensity distribution for the transverse-electric (TE) mode at the cross section along the center plane ($x - z$) of the waveguide. The black dashed lines indicate the profiles of the devices. The inset shows the intensity distribution on the $x - y$ plane at the focal spot (${\rm{z}} = {{20}}\;{\rm{\unicode{x00B5}{\rm m}}}$).

Download Full Size | PPT Slide | PDF

2. TRAPPING WITH FOCUSING REFLECTORS

A. Design and Modeling

In this section, we describe the design and modeling of on-chip optical tweezers based on freeform reflectors. The basic concept is to use a pair of freeform reflectors attached to the end facets of waveguides to redirect and focus light to a predefined spot above the chip through total internal reflection (TIR) as shown in Fig. 1(a). Specifically, we use two ellipsoidal reflectors to focus the counterpropagating light output from two waveguides to the same point. The focused beams intersect with an optimized angle to generate a 3D gradient field for particle trapping in a way similar to a dark-field objective [Fig. 1(b)]. The ellipsoidal reflectors are designed such that one of the foci coincides with the waveguide output and the other with the trap location as indicated in Fig. 1(c). The structure was further optimized by slightly offsetting the elliptical reflector along the longitudinal direction of the waveguide, where the amount of offset is determined by full-wave simulations [47].

In this demonstration, we used single-mode polymer waveguides with a core size of ${2.5}\;{\rm{\unicode{x00B5}{\rm m}}} \times {2.5}\;{\rm{\unicode{x00B5}{\rm m}}}$, with the mode profile shown in Fig. S1. The core and cladding materials are EpoCore and OrmoCore (Micro Resist Technology GmbH) with refractive indices ${n_{\rm{core}}} = {1.575}$ and ${n_{\rm clad}} = {1.537}$, respectively. To eliminate Fresnel reflection at the waveguide facet, EpoCore is also used as the reflector material. The waveguide design yields a divergence angle of the beam output of approximately 10°. To ensure TIR at the reflector–water interface, the angles ${\theta _1}$ and ${\theta _3}$ must meet the conditions ${56.6}^\circ \lt {\theta _1} \lt {73.3}^\circ$ and ${28.3}^\circ \lt {\theta _3} \lt {{90}}^\circ$ [Fig. 1(c)], assuming that the refractive index of water at the 1550 nm trapping wavelength is ${n_{\rm{water}}} = {1.315}$. In our design, the chief ray direction is given by ${\theta _1} = {{65}}^\circ$ and ${\theta _3} = {{50}}^\circ$, corresponding to an equivalent NA of 1.0 ($= {n_{\rm{water}}}{{\cdot}} \sin{\theta _3}$) in water for the crossing beams.

Figure 1(d) depicts the optical intensity distribution on the center cross-sectional plane ($x - z$) of the waveguide for the transverse-electric (TE) polarized mode, simulated using 3D finite-difference time-domain (FDTD). In this example, the beam’s focal spot is set to be 8 µm above the chip surface. The $x - y$-plane intensity distribution is shown in the inset of Fig. 1(d). The focal spot full widths at half-maximum (FWHM) in the $x$, $y$ and $z$ directions are 1.9, 2.1, and 2.5 µm, respectively.

A microparticle in this focal spot region experiences a conservative optical gradient force and a nonconservative optical scattering force. In the $y$ direction, the optical scattering force is negligible since Poynting vectors of the incident beams lie within the $x - z$ plane. In the $x$ direction, a standing wave is formed [inset of Fig. 1(d)], and the scattering forces from the two beams cancel out. Therefore, the optical forces in the $x$ and $y$ directions are dominated by the conservative gradient force, which form the trapping potential for a microparticle. However, in the $z$ direction, the scattering force cannot be neglected and tends to propel the microparticle away from the trap. Considering the fact that the gradient force originating from the strong light intensity gradient is dominant in the $z$ direction for our case, we can define an effective potential depth by restricting our analysis to the $z$ direction [48]. The calculated optical forces and trapping potentials of a 4.5 µm diameter polystyrene sphere ($n = {1.56}$) in water are presented in Fig. 2. The modes in both waveguides are TE polarized and in phase. Interference between the two beams occurs at the focal spot where they cross, resulting in spatially varying intensity fringes, shown in Fig. 2(a). In Figs. 2(b)–2(d) we plot the optical force and trapping potential versus displacement from the equilibrium position, both normalized to the total power sent into the two waveguides. The optical forces are calculated with the Maxwell stress tensor (MST) method. Maximum forces of 1.0, 1.0, and 1.2 pN/mW are obtained along the $x$, $y$, and $z$ directions, corresponding to trapping potential depths of 519, 574, and ${{330}}\;{{\rm{k}}_{\rm B}}{\rm{T}}/{\rm{mW}}$, respectively, where ${{\rm{k}}_{\rm B}}$ denotes the Boltzmann constant and ${\rm{T}}$ represents temperature. By fitting the simulated trapping potential with a harmonic well (Fig. S2), theoretically expected trapping stiffnesses can be obtained along the $x$, $y$, and $z$ directions as 0.23, 0.67, and 0.39 pN/µm/mW, respectively. In water, Brownian motion, with an average kinetic energy of ${1.5}\;{{\rm{k}}_{\rm B}}{\rm{T}}$, will randomly drive the particle to diffuse out of the trap. To achieve stable trapping, a minimum potential depth of ${{10}}\;{{\rm{k}}_{\rm B}}{\rm{T}}$ is usually defined as a trapping threshold [2]. The ${{10}}\;{{\rm{k}}_{\rm B}}{\rm{T}}$ stability threshold corresponds to trapping powers down to 19 µW ($x$), 17 µW ($y$), and 30 µW ($z$) in our design. These threshold power values are much lower than previous reports of on-chip optical tweezers [27,49], benefitting from the high optical coupling efficiency and optimized 3D field profile produced by the micro-optics. We also note that the two beams’ shallow incidence contributes to the reduction of the force due to radiation pressure along the $z$ direction and therefore stabilizes trapping compared to a conventional high-NA objective. To further demonstrate this point, we simulated the same particle trapped by a single Gaussian beam with ${\rm{NA}} = {1.0}$ (Fig. S3) and found that the potential depth along the $z$ direction is ${{137}}\;{{\rm{k}}_{\rm B}}{\rm{T}}/{\rm{mW}}$, 60% less than our design.

 figure: Fig. 2.

Fig. 2. Numerical simulations of optical forces and trapping potentials for the focusing reflector-based optical tweezers. (a)–(d) Simulated (a) intensity distribution at the focal spot and (b)–(d) optical forces and trapping potentials along the $x$, $y$, and $z$ directions when the waveguide output modes are both TE polarized and in phase. (e)–(h) Simulated (e) intensity distribution, (f)–(h) optical forces, and trapping potentials along the $x$, $y$, and $z$ directions when the waveguide output modes have orthogonal polarization. The simulations are normalized to the total power sent into the two waveguides.

Download Full Size | PPT Slide | PDF

In the simulations, we assume that the output beams from the two waveguides have identical polarization, phase, and power. To investigate the robustness of the device operation to structure variations, we consider the extreme scenarios where the two beams have orthogonal polarizations [Figs. 2(e)–2(h)], 10% of power fluctuation (Figs. S4a–S4e), and a $\pi$ phase difference (Figs. S4f–S4j). The nearly identical optical forces and potential depths along all three axes suggest insensitivity of the device performance to polarization, power, and phase changes. The result shows that the optical tweezer design is inherently tolerant against fabrication variations.

B. Experimental Characterizations

The fabrication process is schematically illustrated in Fig. S5, with details and parameters described in Supplement 1. The waveguide was patterned with an i-line UV stepper (GCA AutoStep 200) on top of a 10 µm thick bottom cladding layer, followed by spin coating of the top cladding layer with 10 µm thickness. A trench with a lateral dimension of ${{120}}\;{\rm{\unicode{x00B5}{\rm m}}} \times {{40}}\;{\rm{\unicode{x00B5}{\rm m}}}$ and a depth of 18 µm was then etched into the bottom cladding layers via reactive-ion etching (RIE) to define the waveguide output facets to which the reflectors are attached. The freeform reflectors were then sculpted using TPP in the photosensitive polymer EpoCore with a Photonic Professional GT 3D printer station (Nanoscribe GmbH). The 3D structures for TPP process of the focusing reflectors can be found in Visualization 1 and Fig. S6. The fabricated device is displayed in Fig. 4(a) and Fig. S7. Light coupled into the chip was first split into two equal parts by a Y-branch and then directed to the two waveguide ports of the tweezers.

 figure: Fig. 3.

Fig. 3. Schematic of the experimental setup used to demonstrate on-chip trapping, map the focal spot profile, and measure the trapping strength of the on-chip optical tweezers. (a) A 660 nm laser beam, focused through an oil-immersion ${{63}} \times$ objective, brings a particle to the trapping location. The particle’s position is visualized using light collected through the oil-immersion lens and focused onto the VIS-camera and IR-camera. (b) An illustration of the procedure used to transfer a particle from a conventional microscope optical trap (660 nm laser) to the on-chip trap (1550 nm laser).

Download Full Size | PPT Slide | PDF

The setup used to measure the focal spot’s light intensity profile and characterize the trapping performance is depicted in Fig. 3(a). A liquid chamber was assembled on the chip using a coverslip and was filled with an aqueous microparticle solution. A 1550 nm wavelength laser was coupled into the chip by a lensed fiber via edge coupling. To map the intensity profile near the focal spot, the position of the ${{63}} \times$ objective was swept along the out-of-plane ($z$) direction using a piezoelectric motor, and a series of images, each representing the in-plane intensity distribution at one $z$ position, was captured by an IR camera (Visualization 2). The 3D intensity distribution was then reconstructed, as shown in Fig. 4(b) ($x - z$ plane cut) and Fig. 4(c) ($x - y$ plane cut across the focal spot center). The measured focal spot FWHM is approximately ${5.7}\;{\rm{\unicode{x00B5}{\rm m}}}\;(x) \times {2.8}\;{\rm{\unicode{x00B5}{\rm m}}}$ ($y$) × 4.3 µm ($z$). The increased spot size compared with the simulated results is attributed to deviation of the reflector shape from the design caused by volume change during polymer cross-linking.

 figure: Fig. 4.

Fig. 4. Experimental measurements of the optical trap characteristics. (a) Top view optical microscope image of two focusing reflectors on the chip. (b), (c) Cross sections of the measured light intensity distribution through the focus of the two beams on the (b) $x - z$ plane (${\rm{y}} = {{0}}$) and (c) $x - y$ plane. (d) Optical microscope image of a particle trapped by the chip. The diameter of the trapped particle is 4.5 µm. (e) Individual measurements of the particle’s location (red dots) in 3D space over a 4 min period under a laser power of 1.39 mW, along with its projection onto each orthogonal plane (grey dots). (f) Extracted trapping stiffness along the $x$, $y$, and $z$ directions versus laser power.

Download Full Size | PPT Slide | PDF

A conventional microscope optical tweezer with a water-immersed objective and 660 nm wavelength laser was used to move a particle to the on-chip trap [Fig. 3(b)]. After turning off the 660 nm laser and turning on the 1550 nm laser, the particle can be trapped stably near the focal spot of the two reflectors as shown in Fig. 4(d). To confirm successful trapping, the 1550 nm laser was switched off and on multiple times. When the laser was off, the sphere drifted away from the trap due to Brownian motion. The particle was recaptured by the trap after the laser was switched on (Visualization 3). Its spatial positions were extracted from the recorded video by fitting the position and diameter of the captured particle as shown in Fig. S8. The displacement of the trapped particle from its equilibrium position during a 4 min measurement is plotted in Fig. 4(e) (Visualization 4). The data imply that the particle is better confined along the $y$ and $z$ directions than in the $x$ direction, consistent with the field distribution along the three directions. Traping stiffness is estimated by fitting the displacement distribution with a Gaussian function under different laser powers, which yields ${0.09}\;{{\pm}}\;{0.01}$, ${0.16}\,{{\pm}}\,{0.02}$, and ${0.13}\,{{\pm}}\,{0.02}\;{\rm{pN/\unicode{x00B5}{\rm m}/mW}}$ along the $x$, $y$, and $z$ directions, respectively [Fig. 4(f)].

3. TRAPPING WITH REFRACTIVE MICROLENSES

In this section, we demonstrate that refractive micro-optics can similarly be applied to on-chip optical trapping. The refractive optical tweezers consist of two microlenses with a Cartesian oval shape (Visualization 5, Fig. S9). Considering the waveguide beam as a pointlike source, the shape of the lens can be determined by seeking a constant optical path length between the pointlike source and the target focal spot [50]. The lenses are attached to the output facets of two waveguides facing each other [Fig. 5(a)]. The counterpropagating beams exiting from the waveguides are focused to the same spot by the microlenses to form a trap. The shape of the trap can be readily controlled by changing the lenses’ focusing power: tightly focused beams lead to strong confinement along the longitudinal direction, whereas lower-NA microlenses lead to extended traps along the $x$ direction. In our experiment, we designed an elongated trap shape suitable for multiparticle trapping: the beam is tightly localized in the transverse $y - z$ plane and only loosely confined along the longitudinal $x$ direction. The optical intensity distribution corresponds to a FWHM spot size of ${12.2}\;{\rm{\unicode{x00B5}{\rm m}}}\, (x) \times {1.6}\;{\rm{\unicode{x00B5}{\rm m}}}\,(y) \times {1.6}\;{\rm{\unicode{x00B5}{\rm m}}}\,(z)$. This intensity profile creates a single stable trap site in the $y - z$ plane while permitting multiple particles to be simultaneously trapped along the longitudinal $x$ direction (Fig. S10).

 figure: Fig. 5.

Fig. 5. Refractive micro-optical tweezer characterization. (a) Schematic depicting trapping of two particles by the refractive micro-optical tweezers. (b) Simulated optical intensity distribution in the region between two microlenses. The black lines mark the profiles of the microlenses. (c) Optical microscope image of two particles simultaneously trapped by the device. (d) The measured center-to-center displacement between the two trapped particles in the $x$ and $y$ directions. Three thousand experimental data points were collected over a 5 min measurement duration. (e), (f) Extracted probability distribution histograms of the $x$ and $y$ spacings between the particles. The optical attractive force between the particles ${F_{{\rm{attr}}}}$, double-layer repulsion force ${F_{{\rm{DL}}}}$, and optical gradient force ${F_{{\rm{grad}}}}$ are schematically illustrated as an inset. (g), (h) Potential energy profiles along the $x$ and $y$ directions computed from the data in (e), (f). The red curves in (e)–(h) are theoretical predictions based on our particle interaction model.

Download Full Size | PPT Slide | PDF

We experimentally validated dual particle trapping using the microlens-based tweezers [Fig. 5(c), Visualization 6], which can serve as a simple platform for investigating the interactions between the two particles. Figure 5(d) plots the statistical distribution of the relative displacement between the two trapped particles measured over a 5 min period, with the corresponding probability distribution functions (PDFs) of ${D_x}$ and ${D_y}$ (relative displacement along the $x$ and $y$ directions, respectively), shown in Figs. 5(e) and 5(f). The histograms reveal that ${D_y}$ follows a Gaussian distribution due to the single trapping site defined by the transverse optical confinement. In contrast, the dispersion of ${D_x}$ cannot be accurately described with a Gaussian distribution. To elucidate this observation, we consider two types of interactions acting along the longitudinal $x$ direction: the optical attractive force coming from both the radiation pressure force and the gradient force, which attracts the particles toward each other, and the counteracting double-layer repulsive force [51]. The probability distributions of ${D_x}$ and ${D_y}$ are given by ${\rm p} ({{D_i}}) = C{e^{- \frac{{U({{D_i}})}}{{{k_B}T}}}}$, where $U({{D_i}})$ is the potential energy. Here the index $i$ takes value $x$ or $y$. The potential energy (per unit optical power) along the $y$ direction is a harmonic potential $U({{D_y}}) = \frac{1}{2}{\kappa _y}D_y^2$, where ${\kappa _y}$ is the trap stiffness. The potential energy in the $x$ direction follows $U({{D_x}}) = C{e^{- \kappa ({D_x} - {D_{x,m}})}} + {F_{\rm{attr}}}({D_x} - {D_{x,m}})$, where $\kappa$ is the Debye parameter and ${D_{x,m}}$ gives the interparticle spacing when the potential energy is minimum. By fitting the model with the experiment data, we obtain ${\kappa _y} = 8.27 \; {{\rm k}_{\rm B}}{\rm T}/{{\unicode{x00B5}}}{{\rm{m}}^2} = 0.033 \; {\rm pN}/{\rm{\unicode{x00B5}{\rm m}}}$, $\kappa = 3.26 \; {{\unicode{x00B5}}}{{\rm{m}}^{- 1}}$, ${D_{x,m}} = 5.11 \; {{\unicode{x00B5}{\rm m}}}$, and ${F_{\rm{attr}}} = 32.29 \; {{\rm k}_{\rm B}}{\rm T}/\unicode{x00B5}{\rm m} = 0.13 \; {\rm pN}$. This model fit is in agreement with the measured results as illustrated in Figs. 5(e)–5(h).

An added benefit of the on-chip micro-optical tweezers is that light backscattered into the feeding waveguides can also be employed to monitor the movement of the trapped particles in real time [20]. Taking the refractive optical tweezers as an example, displacement of the particle from its equilibrium position along the $x$ direction breaks the mirror symmetry and induces a large difference in reflected light intensity received by the two waveguides. Our FDTD simulation results suggest that the particle displacement can lead to a reflection difference as large as 25% (Fig. S11), which offers a convenient technique for monitoring the motion of the trapped particle with high precision.

4. CONCLUSION

In summary, we proposed and experimentally validated freeform micro-optics-based optical tweezers as a new platform for on-chip trapping and manipulation. Leveraging the ability to shape the free-space wavefront on demand by freeform micro-optics, we show that 3D gradient optical fields can be created and engineered to trap one or multiple suspended particles using a chip-scale platform. Reflective and refractive micro-optical designs enabling low trapping power and interparticle interaction analysis were demonstrated. The micro-optical tweezers uniquely combine versatile configuration, high optical efficiency, compact footprint, broadband operation, and integration scalability, qualifying it as a promising platform for a plethora of applications such as on-chip sensing, cell analysis and assembly, microscale dynamics study, and atom/ion trapping and cooling.

Funding

Advanced Research Projects Agency-Energy (DE-AR0000847); National Science Foundation (1541959).

Acknowledgment

S. W. D. L. acknowledges support from A*STAR Singapore through the National Science Scholarship Scheme. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the NSF.

Disclosures

The authors declare no conflicts of interest.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]  

2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]  

3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]  

4. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013). [CrossRef]  

5. M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015). [CrossRef]  

6. T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020). [CrossRef]  

7. R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020). [CrossRef]  

8. P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988). [CrossRef]  

9. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]  

10. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]  

11. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008). [CrossRef]  

12. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008). [CrossRef]  

13. L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008). [CrossRef]  

14. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011). [CrossRef]  

15. H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013). [CrossRef]  

16. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993). [CrossRef]  

17. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997). [CrossRef]  

18. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007). [CrossRef]  

19. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17, 13624–13638 (2009). [CrossRef]  

20. C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017). [CrossRef]  

21. H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019). [CrossRef]  

22. X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020). [CrossRef]  

23. A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020). [CrossRef]  

24. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013). [CrossRef]  

25. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996). [CrossRef]  

26. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005). [CrossRef]  

27. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009). [CrossRef]  

28. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18, 21053–21061 (2010). [CrossRef]  

29. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012). [CrossRef]  

30. S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016). [CrossRef]  

31. C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018). [CrossRef]  

32. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011). [CrossRef]  

33. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011). [CrossRef]  

34. K. B. Crozier, “Quo vadis, plasmonic optical tweezers?” Light Sci. Appl. 8, 35 (2019). [CrossRef]  

35. H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020). [CrossRef]  

36. Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007). [CrossRef]  

37. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping,” Opt. Lett. 34, 3451–3453 (2009). [CrossRef]  

38. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010). [CrossRef]  

39. S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010). [CrossRef]  

40. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010). [CrossRef]  

41. C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013). [CrossRef]  

42. A. Krishnan, N. Huang, S.-H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24, 23271–23279 (2016). [CrossRef]  

43. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997). [CrossRef]  

44. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016). [CrossRef]  

45. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018). [CrossRef]  

46. S. Yu, H. Zuo, X. Sun, J. Liu, T. Gu, and J. Hu, “Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface,” J. Lightwave Technol. 38, 3358–3365 (2020). [CrossRef]  

47. S. Yu, X. Qiu, H. Zuo, M. Turduev, T. Gu, and J. Hu, “Compact and fabrication-tolerant waveguide bends based on quadratic reflectors,” J. Lightwave Technol. 38, 4368–4373 (2020). [CrossRef]  

48. T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, Springer Theses (Springer New York, 2013).

49. J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016). [CrossRef]  

50. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36, 918–920 (2011). [CrossRef]  

51. L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [Crossref]
  4. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  5. M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
    [Crossref]
  6. T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020).
    [Crossref]
  7. R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
    [Crossref]
  8. P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
    [Crossref]
  9. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  10. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  11. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
    [Crossref]
  12. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
    [Crossref]
  13. L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
    [Crossref]
  14. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
    [Crossref]
  15. H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013).
    [Crossref]
  16. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [Crossref]
  17. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
    [Crossref]
  18. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
    [Crossref]
  19. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17, 13624–13638 (2009).
    [Crossref]
  20. C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
    [Crossref]
  21. H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019).
    [Crossref]
  22. X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
    [Crossref]
  23. A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
    [Crossref]
  24. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
    [Crossref]
  25. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
    [Crossref]
  26. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
    [Crossref]
  27. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
    [Crossref]
  28. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18, 21053–21061 (2010).
    [Crossref]
  29. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
    [Crossref]
  30. S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016).
    [Crossref]
  31. C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
    [Crossref]
  32. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [Crossref]
  33. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
    [Crossref]
  34. K. B. Crozier, “Quo vadis, plasmonic optical tweezers?” Light Sci. Appl. 8, 35 (2019).
    [Crossref]
  35. H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
    [Crossref]
  36. Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
    [Crossref]
  37. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping,” Opt. Lett. 34, 3451–3453 (2009).
    [Crossref]
  38. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
    [Crossref]
  39. S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
    [Crossref]
  40. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
    [Crossref]
  41. C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
    [Crossref]
  42. A. Krishnan, N. Huang, S.-H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24, 23271–23279 (2016).
    [Crossref]
  43. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref]
  44. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  45. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
    [Crossref]
  46. S. Yu, H. Zuo, X. Sun, J. Liu, T. Gu, and J. Hu, “Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface,” J. Lightwave Technol. 38, 3358–3365 (2020).
    [Crossref]
  47. S. Yu, X. Qiu, H. Zuo, M. Turduev, T. Gu, and J. Hu, “Compact and fabrication-tolerant waveguide bends based on quadratic reflectors,” J. Lightwave Technol. 38, 4368–4373 (2020).
    [Crossref]
  48. T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, Springer Theses (Springer New York, 2013).
  49. J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016).
    [Crossref]
  50. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36, 918–920 (2011).
    [Crossref]
  51. L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
    [Crossref]

2020 (7)

T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020).
[Crossref]

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

S. Yu, H. Zuo, X. Sun, J. Liu, T. Gu, and J. Hu, “Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface,” J. Lightwave Technol. 38, 3358–3365 (2020).
[Crossref]

S. Yu, X. Qiu, H. Zuo, M. Turduev, T. Gu, and J. Hu, “Compact and fabrication-tolerant waveguide bends based on quadratic reflectors,” J. Lightwave Technol. 38, 4368–4373 (2020).
[Crossref]

2019 (2)

K. B. Crozier, “Quo vadis, plasmonic optical tweezers?” Light Sci. Appl. 8, 35 (2019).
[Crossref]

H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019).
[Crossref]

2018 (2)

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

2017 (1)

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

2016 (4)

S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016).
[Crossref]

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016).
[Crossref]

A. Krishnan, N. Huang, S.-H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24, 23271–23279 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

2015 (1)

M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

2014 (1)

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

2013 (4)

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

2012 (1)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[Crossref]

2011 (4)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36, 918–920 (2011).
[Crossref]

2010 (4)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
[Crossref]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18, 21053–21061 (2010).
[Crossref]

2009 (3)

2008 (3)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[Crossref]

2007 (2)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

2005 (1)

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

1997 (2)

1996 (1)

1993 (1)

1988 (1)

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Ahluwalia, B. S.

Asadollahbaik, A.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Bjorkholm, J. E.

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Bouloumis, T. D.

T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020).
[Crossref]

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Bramhavar, S.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Bräuer, A.

Bruzewicz, C. D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Bu, J.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[Crossref]

Capasso, F.

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

Chatelain, F.

Chiaverini, J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Chormaic, S. N.

T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020).
[Crossref]

M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Chu, S.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

Cluzel, B.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

Colas, G.

Collins, S. D.

Constable, A.

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Crozier, K.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
[Crossref]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping,” Opt. Lett. 34, 3451–3453 (2009).
[Crossref]

Crozier, K. B.

K. B. Crozier, “Quo vadis, plasmonic optical tweezers?” Light Sci. Appl. 8, 35 (2019).
[Crossref]

Daly, M.

M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

De Fornel, F.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Dellinger, J.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Dérouard, J.

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Drozella, J.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Dziedzic, J. M.

Erickson, D.

S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Fedeli, J. M.

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Fick, J.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Fuchs, A.

Gaugiran, S.

Gétin, S.

Giessen, H.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gould, P. L.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Gu, T.

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Guo, H. L.

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013).
[Crossref]

Hadji, E.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Hellesø, O. G.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Herkommer, A. M.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Ho-Thanh, M. T.

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

Hu, H.

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

Hu, J.

Huang, L.

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

Huang, N.

Huser, T.

Jager, J. B.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

Jaquay, E.

S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Julienne, P. S.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Kawata, S.

Kharas, D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Kim, J.

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016).
[Crossref]

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
[Crossref]

Kimerling, L.

Kimerling, L. C.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
[Crossref]

Knoesen, A.

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Krishnan, A.

Kumar, A.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

Lalouat, L.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Lett, P. D.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Li, B.

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019).
[Crossref]

Li, T.

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, Springer Theses (Springer New York, 2013).

Li, Z. Y.

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013).
[Crossref]

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Lin, S.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
[Crossref]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping,” Opt. Lett. 34, 3451–3453 (2009).
[Crossref]

Liu, J.

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Liu, L.

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

Liu, R.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Liu, Y.

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17, 13624–13638 (2009).
[Crossref]

Loh, W.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Mandai, S.

S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Martínez, L. J.

Maruo, S.

Maxson, R. T.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

McConnell, R.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

McCourt, P.

Mervis, J.

Michaelis, D.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Mitchem, L.

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Nakamura, O.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Niffenegger, R. J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Ong, L. S.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Oulton, R. F.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

Peyrade, D.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Phillips, W. D.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Picard, E.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Pin, C.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[Crossref]

Povinelli, M. L.

Prentiss, M.

Qian, K.

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

Qiu, X.

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Reens, D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Reid, J. P.

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[Crossref]

Renaut, C.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Rodriguez, A. W.

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

Sage, J. M.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

Schreiber, P.

Serey, X.

S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Sergides, M.

M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Shi, Y.

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

Shin, J. H.

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016).
[Crossref]

Sidick, E.

Sorace-Agaskar, C.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Sterl, F.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Stuart, J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Sun, X.

Sun, Y. Y.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Tan, H.

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

Tani, T.

Tardif, M.

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

Thiele, S.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Thorsheim, H. R.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Ti, C.

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Turduev, M.

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Weber, K.

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Weiner, J.

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Wen, Q.

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

West, G. N.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Woolf, A.

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

Wu, S. H.

S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016).
[Crossref]

Wu, S.-H.

Xin, H.

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019).
[Crossref]

Yang, A. H. J.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Yang, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Yin, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Yu, M.

Yu, S.

Yuan, X. C.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Zarinetchi, F.

Zhang, H.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Zhang, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Zhao, N.

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

Zhao, X.

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

Zhu, S. W.

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Zuo, H.

ACS Photon. (1)

A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses,” ACS Photon. 7, 88–97 (2020).
[Crossref]

Analyst (1)

H. Tan, H. Hu, L. Huang, and K. Qian, “Plasmonic tweezers for optical manipulation and biomedical applications,” Analyst 145, 5699–5712 (2020).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[Crossref]

Appl. Sci. (1)

T. D. Bouloumis and S. N. Chormaic, “From far-field to near-field micro-and nanoparticle optical trapping,” Appl. Sci. 10, 1375 (2020).
[Crossref]

Chem. Soc. Rev. (2)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[Crossref]

Front. Optoelectron. (1)

H. Xin and B. Li, “Fiber-based optical trapping and manipulation,” Front. Optoelectron. 12, 97–110 (2019).
[Crossref]

J. Lightwave Technol. (2)

J. R. Soc. Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Lab Chip (2)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[Crossref]

C. Pin, J. B. Jager, M. Tardif, E. Picard, E. Hadji, F. De Fornel, and B. Cluzel, “Optical tweezing using tunable optical lattices along a few-mode silicon waveguide,” Lab Chip 18, 1750–1757 (2018).
[Crossref]

Laser Photon. Rev. (1)

M. Daly, M. Sergides, and S. N. Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Light Sci. Appl. (1)

K. B. Crozier, “Quo vadis, plasmonic optical tweezers?” Light Sci. Appl. 8, 35 (2019).
[Crossref]

Micromachines (1)

X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines 11, 114 (2020).
[Crossref]

Nano Lett. (5)

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

S. H. Wu, N. Huang, E. Jaquay, and M. L. Povinelli, “Near-field, on-chip optical Brownian ratchets,” Nano Lett. 16, 5261–5266 (2016).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Nat. Photonics (5)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Nature (2)

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. A (1)

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82, 053819 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

P. L. Gould, P. D. Lett, P. S. Julienne, W. D. Phillips, H. R. Thorsheim, and J. Weiner, “Observation of associative ionization of ultracold laser-trapped sodium atoms,” Phys. Rev. Lett. 60, 788–791 (1988).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

L. Liu, A. Woolf, A. W. Rodriguez, and F. Capasso, “Absolute position total internal reflection microscopy with an optical tweezer,” Proc. Natl. Acad. Sci. USA 111, E5609–E5615 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Mech. Astron. 56, 2351–2360 (2013).
[Crossref]

Sci. Rep. (4)

C. Ti, M. T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system,” Sci. Rep. 7, 13168 (2017).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 01258 (2013).
[Crossref]

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6, 33842 (2016).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. De Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

Other (1)

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, Springer Theses (Springer New York, 2013).

Supplementary Material (7)

NameDescription
» Supplement 1       Supplemental Document
» Visualization 1       3D file of the focusing reflectors
» Visualization 2       3D mapping of the crossing beams from the on-chip reflectors
» Visualization 3       Verification of the particle trapping with the reflector-based tweezer
» Visualization 4       Tracing the positions of the particle trapped by on-chip optical tweezer
» Visualization 5       3D file of the refractive micro-lens
» Visualization 6       Dual particles trapping with the diffractive lens-based tweezer

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. On-chip optical trapping using freeform focusing reflectors. (a) A 3D schematic layout of the chip. (b)  $x - z$ cross section of the device illustrating particle trapping at the intersection of two focused beams. (c) The design of the focusing reflectors. (d) FDTD simulated intensity distribution for the transverse-electric (TE) mode at the cross section along the center plane ( $x - z$ ) of the waveguide. The black dashed lines indicate the profiles of the devices. The inset shows the intensity distribution on the $x - y$ plane at the focal spot ( ${\rm{z}} = {{20}}\;{\rm{\unicode{x00B5}{\rm m}}}$ ).
Fig. 2.
Fig. 2. Numerical simulations of optical forces and trapping potentials for the focusing reflector-based optical tweezers. (a)–(d) Simulated (a) intensity distribution at the focal spot and (b)–(d) optical forces and trapping potentials along the $x$ , $y$ , and $z$ directions when the waveguide output modes are both TE polarized and in phase. (e)–(h) Simulated (e) intensity distribution, (f)–(h) optical forces, and trapping potentials along the $x$ , $y$ , and $z$ directions when the waveguide output modes have orthogonal polarization. The simulations are normalized to the total power sent into the two waveguides.
Fig. 3.
Fig. 3. Schematic of the experimental setup used to demonstrate on-chip trapping, map the focal spot profile, and measure the trapping strength of the on-chip optical tweezers. (a) A 660 nm laser beam, focused through an oil-immersion ${{63}} \times$ objective, brings a particle to the trapping location. The particle’s position is visualized using light collected through the oil-immersion lens and focused onto the VIS-camera and IR-camera. (b) An illustration of the procedure used to transfer a particle from a conventional microscope optical trap (660 nm laser) to the on-chip trap (1550 nm laser).
Fig. 4.
Fig. 4. Experimental measurements of the optical trap characteristics. (a) Top view optical microscope image of two focusing reflectors on the chip. (b), (c) Cross sections of the measured light intensity distribution through the focus of the two beams on the (b)  $x - z$ plane ( ${\rm{y}} = {{0}}$ ) and (c)  $x - y$ plane. (d) Optical microscope image of a particle trapped by the chip. The diameter of the trapped particle is 4.5 µm. (e) Individual measurements of the particle’s location (red dots) in 3D space over a 4 min period under a laser power of 1.39 mW, along with its projection onto each orthogonal plane (grey dots). (f) Extracted trapping stiffness along the $x$ , $y$ , and $z$ directions versus laser power.
Fig. 5.
Fig. 5. Refractive micro-optical tweezer characterization. (a) Schematic depicting trapping of two particles by the refractive micro-optical tweezers. (b) Simulated optical intensity distribution in the region between two microlenses. The black lines mark the profiles of the microlenses. (c) Optical microscope image of two particles simultaneously trapped by the device. (d) The measured center-to-center displacement between the two trapped particles in the $x$ and $y$ directions. Three thousand experimental data points were collected over a 5 min measurement duration. (e), (f) Extracted probability distribution histograms of the $x$ and $y$ spacings between the particles. The optical attractive force between the particles ${F_{{\rm{attr}}}}$ , double-layer repulsion force ${F_{{\rm{DL}}}}$ , and optical gradient force ${F_{{\rm{grad}}}}$ are schematically illustrated as an inset. (g), (h) Potential energy profiles along the $x$ and $y$ directions computed from the data in (e), (f). The red curves in (e)–(h) are theoretical predictions based on our particle interaction model.

Metrics