Abstract

Coherent multidimensional spectroscopy (CMDS) and photoelectron spectroscopy have become invaluable tools to elucidate the quantum properties and ultrafast dynamics of matter. Here, we report the combination of both complementary methods in a single experiment. This becomes technically feasible with the implementation of efficient single-counting detection and multichannel software-based lock-in amplification. The approach offers high temporal, spectral, and kinetic energy resolution, enables differential CMDS experiments with unprecedented selectivity, and enhances the dynamic range of CMDS by two orders of magnitude. The demonstrated principle opens up a perspective for atomically resolved CMDS experiments using X-ray photoelectron spectroscopy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Among the available ultrafast spectroscopy methods, coherent multidimensional spectroscopy (CDMS) may be regarded as the most complete technique because it unifies spectroscopic information otherwise only accessible in disjunct experiments [1,2]. In CMDS, a sequence of ${\ge} 3$ ultrashort optical pulses induces a nonlinear response in the sample that is measured as a function of the pulse delays and is Fourier-transformed to yield multidimensional frequency-correlation maps [3]. Advantages of this approach are a high simultaneous spectral and temporal resolution, advanced analysis of inhomogeneities and system–bath interactions and improved sensitivity for intra- and inter-particle couplings as well as energy transfer processes [1,2]. CMDS has been very successful in various fields of ultrafast science; e.g., in the study of biological complexes [46], nanomaterials [710], photochemical reactions [11], and isolated molecular samples in the gas phase [12,13].

A major experimental challenge in CMDS is the required high dynamic range to detect the weak nonlinear signals in the presence of a large linear background. This limits the sensitivity of the method, especially in the study of dilute samples or under low-light conditions. Efficient background-suppression concepts have been developed to solve this issue [14] that rely on noncollinear coherent wave mixing on the one hand, or collinear phase cycling [15] and phase modulation [16] schemes on the other hand. The former approach detects the stimulated emission of photons (coherence-detected CMDS) and is thus restricted to photon detection. The latter detect excited populations (population-detected CMDS), enabling a much wider range of detection schemes. Examples are fluorescence detection [16,17] (including fluorescence microscopy [18,19]), photocurrent detection [20,21], ion mass spectrometry [12,13], and integral photoelectron detection [22], including high-resolution photo-emission electron microscopy (PEEM) [23,24]. These observables can greatly improve the sensitivity and selectivity of the experiment, and some observables are scalable to the single-particle detection level [25] or may be combined with single-counting electronics to facilitate experiments under low light/signal conditions [26]. However, to the best of our knowledge, CMDS has not yet been demonstrated with single-counting detection. Likewise, CMDS has not been combined with photoelectron spectroscopy (PES).

PES analyzes the kinetic energy (KE) and angular distribution of electrons released from the sample upon photoionization, which provides detailed information about the chemical composition and electronic states of the sample [27]. By probing localized core electron orbitals with X-ray light sources, atomic spatial resolution and chemical information is attained [28,29]. PES is applicable to a wide range of samples, ranging from surfaces [30] and liquids in microjet experiments [31] to dilute gas-phase molecular and cluster beam samples [32,33]. This opens up dynamics studies over a wide parameter range from dense solid-state to highly dilute gas phase samples. In molecular systems, PES is beneficial in decoupling the non-adiabatic electronic and nuclear dynamics [34,35]. Angle-resolved detection adds information about the electron density distributions and their dynamics [33,3638], while coincidence detection reveals electron correlations [39]. In solid-state systems, energy and angle-resolved detection maps the band structure [40]. In the conjugate (real) space, PEEM enables the study of local surface effects and nanostructures [24,41,42]. Time-resolved experiments provide access to carrier dynamics [42,43] and surface photochemistry [44]. Phase-sensitive techniques have been developed based on coherent PES using phase-locked optical pulses [45,46]. These methods are naturally connected to coherent control concepts with applications in gas phase [47] and solid-state systems [48,49]. Likewise, they are used in attosecond pulse metrology [50,51] and to resolve attosecond electron dynamics [52], to study coherence properties in solid-state systems [5355] and to image quasiparticles with high resolution [41,56,57].

 figure: Fig. 1.

Fig. 1. (a) Optical pulse sequence to excite and ionize the sample. The 2DES signal is induced by laser pulses 1–4. A fifth UV pulse ionizes the sample afterward. Pulse delays $\tau ,T,t,\Delta$ are indicated along with the modulation of the phase ${\phi _i}$ of pulses 1–4. (b) Experimental setup. Reg. amplifier, Ytterbium-based regenerative femtosecond amplifier; NOPA, noncollinear optical parametric amplifier; FHG, fourth-harmonic generation; PM-2DES setup, phase-modulated 2D electronic spectroscopy setup; Prism comp., prism compressor; UHV, ultrahigh vacuum; Mag. bottle, magnetic bottle time-of-flight electron spectrometer; ADC, analog-to-digital converter; Amp, pre-amplifier; TDC, time-to-digital converter; ULIA, universal lock-in amplifier.

Download Full Size | PPT Slide | PDF

Both CMDS and PES offer a high degree of complementary information and thus their combination would provide a powerful new spectroscopic tool for the study of ultrafast dynamics in a wide variety of samples. Here, we establish coherent 2D photoelectron spectroscopy (2DPES), which combines the 2D variant of CMDS with PES in a single experiment. To overcome the challenge posed by the required low count rates in PES, we implement efficient single-counting detection at a high laser repetition rate (200 kHz), optical phase modulation, and multichannel software-based lock-in amplification. This concept will be also beneficial for other CMDS studies struggling with low signal count rates. Our approach decouples the energetic resolution in PES from the spectro-temporal resolution of CMDS, thus facilitating high-resolution PES without sacrificing temporal resolution. Conversely, the differential phototelectron detection improves the SNR in the 2D spectra by two orders of magnitude compared to integral detection.

2. EXPERIMENTAL SETUP

The experimental scheme is based on population-detected 2D electronic spectroscopy (2DES) combined with PES. However, the same approach may be applied to perform higher-dimensional or higher-order CMDS measurements [58,59]. The optical setup employs a collinear pulse train of four NIR femtosecond laser pulses with delays $\tau ,T,t$ to induce a nonlinear response in the sample [Fig. 1(a)]. The eigenstate of the sample populated after the four-pulse interaction is probed by photoionization with a fifth UV laser pulse (delayed by $\Delta$). The KE of the released photoelectrons is analyzed with an electron spectrometer, giving information about the binding energy and lifetime of the populated states in the sample. The laser intensities of pulses 1–4 are kept at a low level (perturbative regime) to ensure that each laser pulse induces at maximum one light–matter interaction [60]. Still, a large number of linear and nonlinear signals are induced, requiring a selective detection scheme to filter the desired signal contributions. In addition, to extract the weak third-order signals of interest, a detection scheme with a high dynamic range is crucial, especially if dilute gas-phase samples are probed [22].

This is solved by employing a specialized phase modulation technique [16]. Here, the phase ${\phi _i}$ of pulses 1–4 are modulated at distinct radio frequencies ${\Omega _i}$ ($i = 1,\ldots,4$) using acousto-optical modulators [Fig. 1(a)]. Accordingly, the ionization yield is modulated at the beat notes of the radio frequencies [61]. A lock-in amplifier is used to extract the 2DES signals, which beat at frequencies

$${\Omega _ \pm} = (- {\Omega _1} + {\Omega _2}) \pm ({\Omega _3} - {\Omega _4})$$
for the rephasing (${\Omega _ +}$) and nonrephasing (${\Omega _ -}$) 2DES signals, respectively. We typically chose ${\Omega _ \pm}$ in the range of ${\sim}10\, {\rm kHz}$. A 2D Fourier transform with respect to the time variables $\tau ,t$ yields the complex-valued 2D spectra of which the real (imaginary) part provides the nonlinear absorption (dispersion) of the sample, respectively, while $T$ gives the time evolution of the 2D spectra.

The phase modulation concept has several advantages. Lock-in detection features extremely high dynamic range and excellent background suppression, which results in a drastic SNR improvement as demonstrated in [16,61]. Moreover, heterodyne lock-in detection based on an optically constructed reference provides passive phase stabilization and rotating frame detection. This enables quantum interference measurements down to the extreme ultraviolet (XUV) spectral domain [62,63]. We note that rapid, discrete phase cycling using acousto-optical pulse shapers may yield similar performance advantages [64] and might be alternatively implemented for 2DPES.

The experimental setup is shown in Fig. 1(b). A regenerative femtosecond amplifier (Spirit, avg. power $P = 30\,{\rm W}$, $\lambda = 1040\,{\rm nm}$, repetition rate ${\nu _{{\rm rep}}} = 200\,{\rm kHz}$, pulse duration $\Delta t \approx 350\,{\rm fs}$; Spectra Physics, Milpitas, CA, USA) pumps a noncollinear parametric amplifier of which the uncompressed output ($\lambda = 780\,{\rm nm}$) is fed into the optical phase-modulated 2D spectroscopy setup (PM-2DES setup), the details of which are described elsewhere [12]. The four phase-modulated output pulses are compressed with a prism compressor to yield pulses of 20 fs duration at the interaction volume inside the vacuum apparatus. Pulse compression is performed after the PM-2DES setup to avoid self-phase modulation inside the acousto-optical modulators. In addition, a portion of the amplifier output is used for fourth-harmonic generation to produce the UV ($\lambda = 260 \,{\rm nm}$) ionization pulses in a separate beamline. Both beams are collinearily overlapped and focused ($f = 500\,{\rm mm}$) into the vacuum apparatus, where the optical pulses intersect with a dilute rubidium (Rb) atom beam (density $\rho \sim {10^7}\,\,{{\rm cm}^{- 3}}$). The photoelectrons are detected by a magnetic bottle time-of-flight electron spectrometer (energy resolution $\Delta E/E \lesssim 0.02$) [65]. The KE spectrum is reconstructed from the flight time of the electrons. The 2D spectra for specific electron orbitals are retrieved by demodulating the electron yield for specific KEs at frequencies ${\Omega _ \pm}$. To minimize the contribution of background electrons, the focal diameter and position of both beams is matched by adjusting a 3:1 telescope in the UV beampath. All lenses and vacuum windows are made of ${{\rm CaF}_2}$ to minimize damage by two-photon absorption of the intense UV light. At the sample position, pulses 1–5 exhibit pulse energies on the order of ${E_{1,\ldots,4}} = 2 {-} 15\,\,\rm nJ$ and ${E_5} \lt 0.9\,\,\unicode{x00B5}{\rm J}$. Focal diameters are $120\,\,\unicode{x00B5}{\rm m}$ (pulse 1–4) and $155\,\,\unicode{x00B5}{\rm m}$ (pulse 5).

The major obstacle of the experiment is the low electron count rate required in PES to avoid space-charge effects. At high electron yields, strong peak broadening and peak shifts can occur in the photoelectron spectra [66,67]. In combination with phase modulation/cycling, we observed that space-charge processes can lead to a strong cross-talk between otherwise well separated photoelectron peaks, making the requirement for low electron count rates even more stringent. At the low count rates, however, shot noise dominates the signal. In addition, CMDS experiments demand laser intensities in the perturbative regime to avoid spectral artifacts [60]. However, at low laser intensities, linear signal contributions dominate and only a small portion of the already low photoelectron count carries the desired nonlinear 2DES signal, adding a second complication to the experiment.

We solve these issues with the combination of a high laser repetition rate (200 kHz) and efficient single-counting lock-in detection. The former enables reaching sufficient statistics in reasonable measurement time, while keeping laser intensities low. The latter efficiently extracts the 2DES signals while eliminating detector shot noise. To this end, a fast electron multiplier is combined with a multichannel time-to-digital converter (TDC) for the analysis of the photoelectron flight times. The TDC detects up to six events per trigger. In this setting, count rates ${\le} 3$ per laser shot are sufficiently low to prevent saturation of the detection electronics and space-charge artifacts. The flight times extend over a time interval of $5\,\,\unicode{x00B5}{\rm s}$ per laser shot and are binned into 5000 segments. To extract the 2DES signal, the photoelectron yield has to be demodulated with a lock-in amplifier. However, commercial lock-in amplifiers are not designed for single-counting operation and show SNR disadvantages in this detection mode [26]. Moreover, to conserve the KE information of the detected electrons, each individual time bin of the KE distribution has to be demodulated separately, which requires a very large number of lock-in amplifiers. To solve this issue, we have developed a software-based universal lock-in amplifier (ULIA) [68], which permits straightforward upscaling of the number of demodulators and is optimized for single-counting detection. (See Supplement 1 for supporting content.)

For the separation of the absorptive and disperse part of the sample response, the detected signal must be characterized in amplitude and phase. Phase retrieval is achieved with phase-synchronous lock-in detection based on a known, phase-related reference signal [16]. The latter is constructed from the optical interference of pulses 1–4 and is digitized with an analog-to-digital converter (ADC), as shown in Fig. 1(b). To avoid phase drifts between the signal and the reference, it is essential to synchronize their data acquisition. To this end, a common trigger is used for the reference and signal detection. A second trigger (start trigger) tags the starting point of each data run.

 figure: Fig. 2.

Fig. 2. Static photoelectron spectra. (a) Relevant energy levels of rubidium along with the UV photon energy of the ionization pulse and expected kinetic energies of photoelectrons. IP, ionization potential. (b) Photoelectron spectrum of Rb atoms produced by combined interaction with one NOPA excitation pulse (780 nm) and one UV ionization pulse (260 nm) and (c) produced by multiphoton ionization with only the NOPA pulse. In (c), the boxcar-averaged KE distribution is also shown (green) for a better visualization of the peak width. Dashed vertical lines indicate the theoretical kinetic energies for the different bound states of Rb. Red bars indicate integration intervals for extraction of the 2D spectra shown in Figs. 4(a)–4(c).

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. (a) Simplified level scheme, featuring ground $|g\rangle$, first excited $|e\rangle$, second excited $|f\rangle$, and ionic continuum states $|i\rangle$. States $|g - f\rangle$ correspond to the Rb states ${{5S}_{1/2}}$, ${{5P}_{3/2(1/2)}}$, and ${{5D}_{5/2(3/2)}}$, respectively. (b) Example 2DES signal contributions described by double-sided Feynman diagrams. SE, stimulated emission; GSB, ground-state bleach; ESA, excited state absorption. For each contribution, two pathways exist, differing by the population state after the fourth light–matter interaction (red) as well as by a $\pi$ phase shift, indicated by the ${+}/ -$ label. Phasing convention is chosen such that ${{\rm SE}_1}$ contributes with positive amplitude to the overall signal. Arrows (black for NOPA pulses, blue for ionization pulse) indicate the light–matter interactions. Labels ${\pm}{\phi _i}$ show the phase contributions to the final signal resulting in the characteristic signal beating [Eq. (1)].

Download Full Size | PPT Slide | PDF

3. RESULTS

A. Photoelectron Spectra

CMDS has many benefits over other ultrafast spectroscopy methods [1,2]; however, the relatively high complexity of CMDS can lead to experimental artifacts [60,6972] and reproducibility problems [73]. This suggests that new developments in CMDS should be demonstrated on simple model systems. As such, we study the nonlinear response of a Rb atom beam. The clear energy structure and sharp spectral lines of Rb atoms are ideal to demonstrate the new spectroscopic concept and to identify possible deviations from the theory with high resolution. Similarly, many previous technical developments in CMDS have been first demonstrated on alkali vapors [16,17,7478].

The Rb level structure along with the expected photoelectron KEs is shown in Fig. 2(a). The respective measured steady-state photoelectron spectrum is shown in Fig. 2(b), where we combined the UV ionization pulse with a single resonant excitation pulse (NOPA at 780 nm) to access ground and excited states. Due to the narrowband UV ionization laser ($\Delta E = 17\,{\rm meV}$) the spin-orbit splitting of the ${5\rm p}$ electrons ($\Delta E = 29.5\,{\rm meV}$) is resolved, demonstrating the high PES resolution. (See Supplement 1 for supporting content.) However, the energy splitting of the 5d electrons ($\Delta E = 0.4\,{\rm meV}$) is beyond the spectrometer resolution. The large difference in amplitudes can be explained as follows: Compared to the ${5\rm p}$ orbitals, the ${5\rm d}$ orbitals require two-photon absorption to be populated by the pump pulse, involve a much weaker dipole transition (${{5\rm P}_{1/2,3/2}} \to {{5\rm D}_{3/2,5/2}}$), and the ionization cross-section from the ${5\rm d}$ orbital is smaller. The much lower photoelectron yield for the ${5\rm s}$ orbital is due to a Cooper minimum [79], which reduces the ionization cross section by two orders of magnitude compared to the ${5\rm p}$ electrons [80].

In 2DPES, the temporal resolution is effectively decoupled from the ionization process and temporally long, spectrally narrow ionization pulses may be used, as also discussed in Section 3.C. This corresponds to the situation in Fig. 2(b), where high energy resolution is achieved using a narrowband ionization laser. In contrast, in standard time-resolved PES, the pulse duration of the ionization laser directly affects the attainable time resolution and both short excitation and ionization pulses should be used [33]. Accordingly, Fig. 2(c) shows a photoelectron spectrum for resonance-enhanced multiphoton ionization with a single NOPA pulse (${\approx} 185 \,{\rm meV}$ FWHM, Fourier limit of 10 fs); thus, a short pulse is used for the excitation and ionization, resulting in more than an order of magnitude lower energy resolution compared to Fig. 2(b). Note that, for this measurement, the pulse energy of the NOPA pulses is increased to 15 nJ to amplify multiphoton processes.

B. Differential 2D Spectra

To extend the steady-state PES of Fig. 2 to 2DPES, a sequence of ${4} + {1}$ excitation and ionization pulses is applied, as shown in Fig. 1(a), which provides access to the time-resolved nonlinear response of the system. While nonlinear spectroscopy generally provides a high degree of information about the static and dynamic properties of the sample, data interpretation is more difficult due to the large number of linear and nonlinear processes superimposing in the detected signal. In CMDS, the interpretation is greatly simplified by efficiently filtering the system response, selecting only a small subset of the nonlinear signals, which is the third-order response in the case of 2DES measurements. To this end, a combination of phase modulation and lock-in detection is implemented, as described above. The detected third-order signals are comprised of stimulated emission (SE), ground-state bleach (GSB), and excited-state absorption (ESA).

Example signal contributions are shown in Fig. 3, visualized as double-sided Feynman diagrams [3]. The 2DES signals are subject to four light–matter interactions (black arrows, induced by the four NOPA pulses), which prepare the system in a stationary population state (red). Depending on the sequence of field–matter interactions, phase shifts of $\pi$ may occur between the individual signal contributions [labels in Fig. 3(b)], leading to spectral peaks with positive or negative amplitude in the 2D spectra [81]. We chose the phase convention such that the ${{\rm SE}_1}$ (${{\rm GSB}_1}$) signals contribute with zero phase (positive amplitude). By scanning the time delays between the four excitation pulses (black arrows) the four-point correlation function is recorded, which is encoded in the final population state after the fourth interaction (red). The nonlinenar signal is probed by photoionization (blue arrows), which projects the bound population state to specific electron energies in the continuum [Fig. 2(a)]. The combination with PES thus enables differential detection of the nonlinear signals within the third-order response manifold.

To demonstrate the capability of the differential detection scheme, we extracted 2D spectra from different regions of the electron KE distribution [Figs. 4(a)–4(c)] and compare them to the integral 2D spectrum obtained for integration over all electron KEs [Fig. 4(d)]. In the latter spectrum, the SE and GSB signals are clearly visible: The diagonal peaks reflect the linear absorption ($5{\rm S_{1/2}} \to 5{\rm P_{3/2(1/2)}}$) and the cross-peaks show the coherent coupling among the excited 5P states via the laser field. The ESA signals, involving transitions to the higher-lying states ($5{\rm P_{3/2(1/2)}} \to 5{\rm D_{5/2(3/2)}}$), are expected as blue-shifted peaks above the diagonal. These contributions are a factor of ${\approx} 250$ weaker due to the smaller dipole moment of the $5{\rm P_{3/2(1/2)}} \to 5{\rm D_{5/2,3/2}}$ transition and the smaller ionization cross section for the higher-lying states; hence, they are not discriminable from the noise.

 figure: Fig. 4.

Fig. 4. (a)–(c) Differential 2D spectra extracted from selected regions of the electron KE, as marked by red bars in Fig. 3(a). Labels indicate the individual electron orbitals that are probed. d) Integral 2D spectrum obtained from integration over the whole electron KE. (e) Horizontal cuts through the 2D spectra [at ${\omega _t} = 12826\;{{\rm cm}^{- 1}}$ for (a) and (c), and at ${\omega _t} = 12891\;{{\rm cm}^{- 1}}$ for (b)] visualize the SNR of each 2D spectrum. For comparison, the noise level of the corresponding integral 2D spectrum is shown as gray background. The noise level is defined as the rms value of the signal amplitude in a square area of $340\;{{\rm cm}^{- 1}} \times 340\;{{\rm cm}^{- 1}}$ evaluated in the upper right corner of the 2D spectra. All 2D spectra show the absorptive part of the third-order response.

Download Full Size | PPT Slide | PDF

In contrast, the differential 2D spectra [Figs. 4(a)–4(c)] probe only certain electron orbitals and thus exhibit distinct spectral differences. These differences are readily explained considering the signal contributions in Fig. 3(b). Figure 4(a) selectively probes the ${5\rm d}$ electrons and hence only negative ESA signals of the type ${{\rm ESA}_2}$ contribute; however, in Fig. 4(b), 5p electrons are probed, leading to a selection of positive ${{\rm SE}_1}$, ${{\rm GSB}_1}$, and ${{\rm ESA}_1}$ contributions. Note that the ${{\rm ESA}_1}$ signals here are also covered by the noise. In Fig. 4(c), the ${5\rm s}$ ground-state electrons are probed, revealing to some extend the negative ${{\rm SE}_2}$ and ${{\rm GSB}_2}$ type signals.

Overall, considering the low sample density and the partially small ionization cross sections, the differential 2D spectra show a high quality and clear, sharp spectral features. This confirms the feasibility to probe 2DES signals from specific electron orbitals and to dissect the third-order response of the sample beyond the capabilities of pure phase cycling/modulation techniques or phase matching in coherence-detected CMDS. This ability is of great advantage when complex systems and/or complex dynamics are analyzed. One example is the recent debate about the interpretation of overlapping cross-peaks and ESA signals in population-detected 2DES [19,8289]. Furthermore, time-resolved fluorescence detection was proposed to enable detailed analysis of exciton annihilation as an asset over coherence-detected 2DES [86]. In this context, we note that time-resolved photoelectron detection is possible in 2DPES without modification of the experiment (simply by scanning delay $\Delta$ between pulse 4 and 5).

In addition to the improved pathway selectivity, 2DPES offers a clear sensitivity advantage. While the ESA signals are too weak to be observed in Figs. 4(b) and 4(d), they are clearly observable in the background-suppressed detection of Fig. 4(a). For a better visualization of the SNR advantage, Fig. 4(e) shows horizontal cuts through (a–c) along with the noise level of the corresponding integral 2D spectra. Obviously, the noise level in all differential 2D spectra is much lower than for the integral detection. For Fig. 4(a), the SNR improvement is more than two orders of magnitude, which facilitates the observation of the weak ESA features. This proves that the differential detection effectively increases the dynamic range of the experiment to detect strong and weak nonlinear signals in a single measurement.

 figure: Fig. 5.

Fig. 5. Differential 2D spectra extracted from the partially overlapping photoelectron peaks of the ${{5\rm P}_{1/2}}$(${{5\rm P}_{3/2}}$) states (see according labels) demonstrating the resolving power of the PES.

Download Full Size | PPT Slide | PDF

For the 5s electron detection [Fig. 4(c)], signals (${{\rm SE}_2}$ and ${{\rm GSB}_2}$) complementary to the ones detected in Fig. 4(b) (${{\rm SE}_1}$ and ${{\rm GSB}_1}$) contribute. Yet, the SNR is much lower in Fig. 4(c) so that the cross peaks are covered by the noise. There are two reasons for this. On the one hand, the ionization cross section is much smaller for the ${5\rm s}$ electrons (Cooper minimum) and the reduced counting statistics decrease the SNR by a factor of ${\approx} 10$. We note that generally the Cooper minimum can be avoided by using a different ionization wavelength. On the other hand, at the laser intensities used in the experiment, the majority of Rb atoms remain in the ground state. While photoelectrons from these ground-state atoms are efficiently suppressed in the detection of excited populations [Figs. 4(a) and 4(b)], they cannot be discriminated in the ground-state detection channel, which increases the noise. Hence, the background suppression is less effective in Fig. 4(c).

Note that at the experimental conditions no cross-talk between the different detection channels was discernible. However, at higher laser intensities, parasitic signals from ${\gt}3$ order light–matter interactions can contribute, which compromise a clean signal selection via the population states (not shown) [60].

C. Resolution Limit

Another asset of 2DPES is the decoupling of the energy resolution of PES from the overall time resolution of the experiment. In general, time-resolved PES is based on a pump-probe scheme, where the pump pulse excites a transient state in the system whose dynamics are probed via ionization with a second pulse [33,90]. If high time resolution is needed, ultrashort (spectrally broad) pump and ionization pulses are inevitable which, however, limits the KE resolution (cf. Fig. 2). In contrast, in 2DPES four pulses [pulses 1–4, Fig. 1(a)] clock the ultrafast dynamics of the sample and probe the nonlinear optical response with high temporal and spectral resolution [1]. After the four-pulse interaction, the system is prepared in a stationary eigenstate. The demands on the timing and duration of the ionization pulse (pulse 5) are hence relaxed as long as the pulse delay and duration are significantly shorter than the lifetime of the probed eigenstate. This enables the use of narrowband ionization lasers to perform high-resolution PES while using ultrashort excitation laser pulses to clock and probe the system dynamics.

In the demonstrated 2DPES experiments, we used a pulse duration ratio between excitation and ionization pulses of ${\gt}10$, leading to a clear resolution advantage in the photoelectron spectra, as shown in Fig. 2. To demonstrate the resolving power of the differential 2DPES detection, we extracted 2D spectra from the energetically closely spaced ${{5\rm P}_{3/2}}$ and ${{5\rm P}_{1/2}}$ electron states. The spectral separation between both spin-orbit states is only $238\;{{\rm cm}^{- 1}}$ (29.5 meV) and the two photoelectron peaks clearly overlap in the KE distribution, as shown in Supplement 1. Figure 5 shows that we can still cleanly separate the nonlinear signals that couple to either of the two final spin-orbit states. This resolving power is beneficial in case the optical absorption bands show strong spectral overlap and cannot be separated by optical spectroscopy. Here, the combination with PES can lift the degeneracy. Common examples are the overlap of ${{\rm S}_0} \to {{\rm S}_1}$ (SE,GSB) with ${{\rm S}_1} \to {{\rm S}_2}$ (ESA) signals [83,85] or degenerate absorption bands from different chemical, spin species, or different symmetry states that couple to different ionic states (Koopman correlations) [32].

In molecular and solid-state systems, the lifetime of the excited states is generally shorter than in the atomic system studied here. This can lead to broad photoelectron distributions and shorter ionization pulses are needed to capture the excited state population in the PES. This hampers the attainable energy resolution in PES. Still, in many molecular and solid-state systems, PES has proven as a highly differential probe [32,33,43]. In particular, angular-resolved PES improves the selectivity [33,36,37,55]. With the developed software-based lock-in amplifier [68], 2D detectors could be incorporated in 2DPES, making angle-resolved photoelectron detection a prospective extension of our method.

On the other hand, new insights have been gained in many systems of interest in photochemistry, photobiology, and nanomaterial research by combining CMDS with “slow” fluorescence or photocurrent probes [19,21,59,82,85,9195]. Here, 2DPES will add information about dark states and improve selectivity. In such systems, the relaxed demands on the timing for the ionization pulse opens up the use of X-ray synchrotron radiation, for which timing synchronization in the low picosecond range is now feasible [96]. The high brightness, high repetition rate, and narrow spectral bandwidths of synchrotron light sources offer a promising perspective to probe 2DES signals on confined inner-shell electron orbitals, which would correlate the valence electron dynamics in complex systems with atomic resolution and chemical selectivity [28,29]. In addition, the commission of high-repetition rate X-ray free-electron lasers adds another option for this development [97].

We note that ion-mass detection is another selective detection method that specifically adds information about the products in photochemical reactions [12,13], and thus can disentangle degenerate spectral features. A common problem in mass-detection is, however, fragmentation that can lead to cross-talk between the detection channels. An example is given in our previous mass-selected 2DES study showing a severe reduction of the SNR in the heavily fragmenting mass channels [12]. In contrast, PES is not affected by fragmentation and can as well provide decisive information about reaction products [32].

4. CONCLUSION

With 2DPES, we have introduced a method for time-resolved nonlinear spectroscopy that combines 2DES with PES. By implementing optical phase modulation with efficient single-counting detection and multichannel software-based lock-in amplification, we were able to disentangle the third-order nonlinear response of the studied sample to a high degree, beyond the limits of phase-matching and phase-cycling methods. The differential detection of 2D spectra, furthermore, greatly improves the dynamic range of the experiment, leading to an SNR improvement of two orders of magnitude. The method decouples the temporal resolution from the kinetic energy resolution in PES, enabling highly differential electron detection. Compared to other time-resolved PES techniques, incorporating CMDS methods improves the spectro-temporal resolution and the analysis of inhomogeneities through photon echo signals [1], facilitates the study of coherent couplings, and offers highly sensitive probes for interparticle interactions [12,74,98]. Since PES can be performed in many different environments, ranging from the dilute gas phase to liquid samples in microjets and condensed phase thin films or solid-state systems [30,31,33], 2DPES offers an ideal tool to study fundamental ultrafast processes in a wide parameter range with a large palette of detection schemes. Although the method demonstrated here is for 2DES probing the third-order response of the spectroscopic sample, it may also be combined with higher-order or higher-dimensional CMDS. Other promising perspectives are the combination of 2DPES with X-ray photoionization to probe chemical shifts, offering high spatial resolution down to the atomic level. Angle-resolved PES will add decisive symmetry information in molecules [33,36,37] and will reveal bulk and surface states in solid-state systems [53,55,99]. Electron–electron as well as electron–ion coincidence detection may even further improve the selectivity and sensitivity of 2DPES [33,100].

Funding

Deutsche Forschungsgemeinschaft (2079); European Research Council (694965).

Acknowledgment

The authors thank B. v. Issendorff for helpful advice in the construction of the magnetic bottle spectrometer. The article processing charge was funded by the University of Freiburg in the funding programme Open Access Publishing.

Disclosures

The authors declare no conflicts of interests.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003). [CrossRef]  

2. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. USA 104, 14190–14196 (2007). [CrossRef]  

3. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000). [CrossRef]  

4. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005). [CrossRef]  

5. K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012). [CrossRef]  

6. J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016). [CrossRef]  

7. S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited],” J. Opt. Soc. Am. B 29, A69–A81 (2012). [CrossRef]  

8. M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012). [CrossRef]  

9. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015). [CrossRef]  

10. A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018). [CrossRef]  

11. P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015). [CrossRef]  

12. L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019). [CrossRef]  

13. S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018). [CrossRef]  

14. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015). [CrossRef]  

15. H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008). [CrossRef]  

16. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007). [CrossRef]  

17. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003). [CrossRef]  

18. S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018). [CrossRef]  

19. V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018). [CrossRef]  

20. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013). [CrossRef]  

21. K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014). [CrossRef]  

22. L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018). [CrossRef]  

23. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011). [CrossRef]  

24. M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015). [CrossRef]  

25. D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014). [CrossRef]  

26. A. Tamimi, T. Landes, J. Lavoie, M. G. Raymer, M. G. Raymer, A. H. Marcus, and A. H. Marcus, “Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting,” Opt. Express 28, 25194–25214 (2020). [CrossRef]  

27. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, 2013).

28. S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964). [CrossRef]  

29. U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973). [CrossRef]  

30. C. S. Fadley, “X-ray photoelectron spectroscopy: progress and perspectives,” J. Electron Spectrosc. Relat. Phenom. 178–179, 2–32 (2010). [CrossRef]  

31. R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016). [CrossRef]  

32. A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54, 89–119 (2003). [CrossRef]  

33. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004). [CrossRef]  

34. V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999). [CrossRef]  

35. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011). [CrossRef]  

36. K. L. Reid, “Photoelectron angular distributions,” Annu. Rev. Phys. Chem. 54, 397–424 (2003). [CrossRef]  

37. C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009). [CrossRef]  

38. R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021). [CrossRef]  

39. P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007). [CrossRef]  

40. F. Himpsel, “Angle-resolved measurements of the photoemission of electrons in the study of solids,” Adv. Phys. 32, 1–51 (1983). [CrossRef]  

41. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005). [CrossRef]  

42. L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021). [CrossRef]  

43. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997). [CrossRef]  

44. H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002). [CrossRef]  

45. H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997). [CrossRef]  

46. M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003). [CrossRef]  

47. M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005). [CrossRef]  

48. J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007). [CrossRef]  

49. M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020). [CrossRef]  

50. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001). [CrossRef]  

51. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001). [CrossRef]  

52. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010). [CrossRef]  

53. S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997). [CrossRef]  

54. H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999). [CrossRef]  

55. M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019). [CrossRef]  

56. Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015). [CrossRef]  

57. Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020). [CrossRef]  

58. S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018). [CrossRef]  

59. S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019). [CrossRef]  

60. M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020). [CrossRef]  

61. L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015). [CrossRef]  

62. A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020). [CrossRef]  

63. A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020). [CrossRef]  

64. N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25, 7869–7883 (2017). [CrossRef]  

65. P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983). [CrossRef]  

66. D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997). [CrossRef]  

67. S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006). [CrossRef]  

68. D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021). [CrossRef]  

69. P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010). [CrossRef]  

70. F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017). [CrossRef]  

71. D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019). [CrossRef]  

72. H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013). [CrossRef]  

73. D. B. Turner, “Standardized specifications of 2D optical spectrometers,” Results Chem. 1, 100001 (2019). [CrossRef]  

74. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012). [CrossRef]  

75. J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012). [CrossRef]  

76. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013). [CrossRef]  

77. B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017). [CrossRef]  

78. B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018). [CrossRef]  

79. G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968). [CrossRef]  

80. M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018). [CrossRef]  

81. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

82. A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012). [CrossRef]  

83. P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018). [CrossRef]  

84. M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018). [CrossRef]  

85. K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019). [CrossRef]  

86. T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019). [CrossRef]  

87. A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019). [CrossRef]  

88. P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020). [CrossRef]  

89. O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020). [CrossRef]  

90. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57, 555–592 (2006). [CrossRef]  

91. D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020). [CrossRef]  

92. P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020). [CrossRef]  

93. S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021). [CrossRef]  

94. E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016). [CrossRef]  

95. T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020). [CrossRef]  

96. W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014). [CrossRef]  

97. W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020). [CrossRef]  

98. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010). [CrossRef]  

99. X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014). [CrossRef]  

100. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref]
  2. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. USA 104, 14190–14196 (2007).
    [Crossref]
  3. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
    [Crossref]
  4. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [Crossref]
  5. K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012).
    [Crossref]
  6. J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
    [Crossref]
  7. S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited],” J. Opt. Soc. Am. B 29, A69–A81 (2012).
    [Crossref]
  8. M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
    [Crossref]
  9. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
    [Crossref]
  10. A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
    [Crossref]
  11. P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
    [Crossref]
  12. L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
    [Crossref]
  13. S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018).
    [Crossref]
  14. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
    [Crossref]
  15. H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
    [Crossref]
  16. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [Crossref]
  17. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [Crossref]
  18. S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
    [Crossref]
  19. V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
    [Crossref]
  20. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
    [Crossref]
  21. K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
    [Crossref]
  22. L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
    [Crossref]
  23. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
    [Crossref]
  24. M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
    [Crossref]
  25. D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
    [Crossref]
  26. A. Tamimi, T. Landes, J. Lavoie, M. G. Raymer, M. G. Raymer, A. H. Marcus, and A. H. Marcus, “Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting,” Opt. Express 28, 25194–25214 (2020).
    [Crossref]
  27. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, 2013).
  28. S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
    [Crossref]
  29. U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
    [Crossref]
  30. C. S. Fadley, “X-ray photoelectron spectroscopy: progress and perspectives,” J. Electron Spectrosc. Relat. Phenom. 178–179, 2–32 (2010).
    [Crossref]
  31. R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
    [Crossref]
  32. A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54, 89–119 (2003).
    [Crossref]
  33. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
    [Crossref]
  34. V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
    [Crossref]
  35. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
    [Crossref]
  36. K. L. Reid, “Photoelectron angular distributions,” Annu. Rev. Phys. Chem. 54, 397–424 (2003).
    [Crossref]
  37. C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
    [Crossref]
  38. R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
    [Crossref]
  39. P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
    [Crossref]
  40. F. Himpsel, “Angle-resolved measurements of the photoemission of electrons in the study of solids,” Adv. Phys. 32, 1–51 (1983).
    [Crossref]
  41. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
    [Crossref]
  42. L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
    [Crossref]
  43. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
    [Crossref]
  44. H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002).
    [Crossref]
  45. H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
    [Crossref]
  46. M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
    [Crossref]
  47. M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
    [Crossref]
  48. J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
    [Crossref]
  49. M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
    [Crossref]
  50. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
    [Crossref]
  51. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
    [Crossref]
  52. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
    [Crossref]
  53. S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
    [Crossref]
  54. H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
    [Crossref]
  55. M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
    [Crossref]
  56. Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
    [Crossref]
  57. Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
    [Crossref]
  58. S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
    [Crossref]
  59. S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
    [Crossref]
  60. M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020).
    [Crossref]
  61. L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
    [Crossref]
  62. A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
    [Crossref]
  63. A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
    [Crossref]
  64. N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25, 7869–7883 (2017).
    [Crossref]
  65. P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983).
    [Crossref]
  66. D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
    [Crossref]
  67. S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
    [Crossref]
  68. D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
    [Crossref]
  69. P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
    [Crossref]
  70. F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
    [Crossref]
  71. D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
    [Crossref]
  72. H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
    [Crossref]
  73. D. B. Turner, “Standardized specifications of 2D optical spectrometers,” Results Chem. 1, 100001 (2019).
    [Crossref]
  74. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
    [Crossref]
  75. J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
    [Crossref]
  76. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
    [Crossref]
  77. B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
    [Crossref]
  78. B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
    [Crossref]
  79. G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
    [Crossref]
  80. M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
    [Crossref]
  81. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
  82. A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
    [Crossref]
  83. P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018).
    [Crossref]
  84. M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
    [Crossref]
  85. K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
    [Crossref]
  86. T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
    [Crossref]
  87. A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
    [Crossref]
  88. P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
    [Crossref]
  89. O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
    [Crossref]
  90. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57, 555–592 (2006).
    [Crossref]
  91. D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
    [Crossref]
  92. P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
    [Crossref]
  93. S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
    [Crossref]
  94. E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
    [Crossref]
  95. T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
    [Crossref]
  96. W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
    [Crossref]
  97. W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
    [Crossref]
  98. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
    [Crossref]
  99. X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
    [Crossref]
  100. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006).
    [Crossref]

2021 (4)

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
[Crossref]

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

2020 (12)

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
[Crossref]

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
[Crossref]

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020).
[Crossref]

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

A. Tamimi, T. Landes, J. Lavoie, M. G. Raymer, M. G. Raymer, A. H. Marcus, and A. H. Marcus, “Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting,” Opt. Express 28, 25194–25214 (2020).
[Crossref]

2019 (8)

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
[Crossref]

D. B. Turner, “Standardized specifications of 2D optical spectrometers,” Results Chem. 1, 100001 (2019).
[Crossref]

2018 (10)

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
[Crossref]

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
[Crossref]

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018).
[Crossref]

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

2017 (3)

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25, 7869–7883 (2017).
[Crossref]

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

2016 (3)

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
[Crossref]

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
[Crossref]

2015 (6)

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

2014 (4)

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

2013 (3)

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

2012 (6)

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012).
[Crossref]

S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited],” J. Opt. Soc. Am. B 29, A69–A81 (2012).
[Crossref]

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

2011 (2)

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

2010 (4)

C. S. Fadley, “X-ray photoelectron spectroscopy: progress and perspectives,” J. Electron Spectrosc. Relat. Phenom. 178–179, 2–32 (2010).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

2009 (1)

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

2008 (1)

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

2007 (4)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. USA 104, 14190–14196 (2007).
[Crossref]

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

2006 (3)

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006).
[Crossref]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57, 555–592 (2006).
[Crossref]

2005 (3)

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

2004 (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

2003 (5)

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54, 89–119 (2003).
[Crossref]

K. L. Reid, “Photoelectron angular distributions,” Annu. Rev. Phys. Chem. 54, 397–424 (2003).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

2002 (1)

H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002).
[Crossref]

2001 (2)

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

2000 (1)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

1999 (2)

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[Crossref]

1997 (4)

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

1983 (2)

F. Himpsel, “Angle-resolved measurements of the photoemission of electrons in the study of solids,” Adv. Phys. 32, 1–51 (1983).
[Crossref]

P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983).
[Crossref]

1973 (1)

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

1968 (1)

G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
[Crossref]

1964 (1)

S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
[Crossref]

Abeghyan, S.

W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
[Crossref]

Abramian, P.

W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Agostini, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Allaria, E.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Anderson, H. L.

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Andrade, X.

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

Andreyev, O.

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Andric, L.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Argondizzo, A.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Arnold, M. S.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Aspuru-Guzik, A.

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

Assion, A.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Augé, F.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Autry, T. M.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

Azzeer, A. M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Bajoni, D.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Balcou, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Bangert, U.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

Basilier, E.

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

Bauer, M.

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Baumert, T.

M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
[Crossref]

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Bazán, C. M.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Bazhan, O.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Becker, U.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Bergmark, T.

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

Binz, M.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

Bisgaard, C. Z.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Bittner, E. R.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Blanchet, V.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Bloch, J.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Bocquet, F. C.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Borghes, R.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Bouchoule, S.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Bouloufa-Maafa, N.

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Bradforth, S. E.

R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
[Crossref]

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Brandstetter, D.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Braune, M.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Breger, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Brenneis, L.

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

Brinks, D.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Bristow, A. D.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Brixner, T.

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Bruder, L.

D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
[Crossref]

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
[Crossref]

Bunz, U. H. F.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Burgdörfer, J.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Calhoun, T. R.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

Callegari, C.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Cavalieri, A. L.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Cerullo, G.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Chen, J.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

Chen, L.

Cho, M.

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Cinquegrana, P.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Ciurylo, R.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Clarkin, O. J.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Cogdell, R. J.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Creek, D. M.

G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
[Crossref]

Cui, X.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Cundiff, S.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Cundiff, S. T.

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited],” J. Opt. Soc. Am. B 29, A69–A81 (2012).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Dai, X.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Dai, Y.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

Damtie, F.

A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
[Crossref]

Danailov, M.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

de A. Camargo, F. V.

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Decking, W.

W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
[Crossref]

Demidovich, A.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Di Fraia, M.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Dick, K. A.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Differt, D.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Ditchburn, R. W.

G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
[Crossref]

Domcke, W.

Dostál, J.

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
[Crossref]

Drabbels, M.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Draeger, S.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Dreuw, A.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Dulieu, O.

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

Edlund, P.

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

Eland, J. H. D.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

El-Khoury, P. Z.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

Engel, V.

M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
[Crossref]

Eom, I.

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

Ernstorfer, R.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Fadley, C. S.

C. S. Fadley, “X-ray photoelectron spectroscopy: progress and perspectives,” J. Electron Spectrosc. Relat. Phenom. 178–179, 2–32 (2010).
[Crossref]

Falvo, C.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Feifel, R.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Feist, J.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Few, S.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Fieß, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Fischer, A.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Fischer, I.

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

Fleming, G. R.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

Gagnon, J.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Gardiner, A. T.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Garrett-Roe, S.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Gelin, M. F.

Gelius, U.

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

Geßner, O.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Ghosh, A.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

Giannessi, L.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Goetz, S.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

Gong, Y.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

Goulielmakis, E.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Graham, M. W.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

Grechko, M.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Green, A. A.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

Grégoire, P.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Grimmelsmann, L.

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Güdde, J.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

Gumhalter, B.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Gustavsson, E.

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

Hagström, S.

S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
[Crossref]

Hamm, P.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

Han, J.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Hayden, C. C.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Heberle, A. P.

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Heinzmann, U.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Heisler, I. A.

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Hensen, M.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Hernando, J.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Hersam, M. C.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

Hertel, I. V.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006).
[Crossref]

Hess, W. P.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

Hildner, R.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Himpsel, F.

F. Himpsel, “Angle-resolved measurements of the photoemission of electrons in the study of solids,” Adv. Phys. 32, 1–51 (1983).
[Crossref]

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. USA 104, 14190–14196 (2007).
[Crossref]

Hockett, P.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Höfer, U.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

Hofstetter, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Horn, C.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Hsieh, C.-S.

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

Hu, D.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

Huang, C.-B.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

Hüfner, S.

S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, 2013).

Jansen, T. L. C.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Ji, L.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Jo, W.

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

Joly, A. G.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

Jonas, D. M.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

Jones, A. C.

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

Kalaee, A. A. S.

A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
[Crossref]

Karki, K. J.

A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

Karpowicz, N.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Kearns, N. M.

Kenneweg, T.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Kienberger, R.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

Kleineberg, U.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Koch, S. W.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

Kolb, V.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

Komninos, Y.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Korbman, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Kornilov, O.

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Kortyna, A.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

Kramer, C.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Krausz, F.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Krauszl, F.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Kruit, P.

P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983).
[Crossref]

Kubo, A.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

Kubota, S.

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Kühn, O.

O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
[Crossref]

Kumpf, C.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Kunsel, T.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

Laarmann, T.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Lablanquie, P.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Lambert, C.

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Landahl, E. C.

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

Landes, T.

Lavoie, J.

Lee, A. M. D.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Lee, S.

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

Lehman, S.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Lemaétre, A.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Lewis, K. L.

Lewis, K. L. M.

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012).
[Crossref]

Li, A.

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
[Crossref]

Li, D.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

Li, H.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Liese, D.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Lietard, A.

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

Lomsadze, B.

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

Lonergan, M. C.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

Lott, G. A.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

Lükermann, F.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Lüttig, J.

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Ma, X.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Maikowski, L.

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Malý, P.

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018).
[Crossref]

Mancal, T.

O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
[Crossref]

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018).
[Crossref]

Marcus, A. H.

A. Tamimi, T. Landes, J. Lavoie, M. G. Raymer, M. G. Raymer, A. H. Marcus, and A. H. Marcus, “Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting,” Opt. Express 28, 25194–25214 (2020).
[Crossref]

A. Tamimi, T. Landes, J. Lavoie, M. G. Raymer, M. G. Raymer, A. H. Marcus, and A. H. Marcus, “Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting,” Opt. Express 28, 25194–25214 (2020).
[Crossref]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

Marder, T. B.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Marr, G. V.

G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
[Crossref]

Mathias, S.

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Matsunami, S.

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Matutes, Y. A.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

McDonough, T. J.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Meech, S. R.

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Mehlenbacher, R. D.

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25, 7869–7883 (2017).
[Crossref]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Meier, T.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

Melchior, P.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Mercouris, Th.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Michiels, R.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Mikkelsen, A.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Mitric, R.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

Mittnacht, D.

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Mong, R. S. K.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

Moody, G.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Moody, I.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

Moos, M.

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

Moriya, N.

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Mostame, S.

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

Mudrich, M.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
[Crossref]

Mueller, S.

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Mukamel, S.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

Muller, H. G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Mullot, G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Munoz-Rodriguez, R.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Münster, L.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Myers, J. A.

Nagano, H.

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[Crossref]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Nagele, S.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Nagórny, B.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Nardin, G.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

Nelson, J.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Nelson, K. A.

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

Neppl, S.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Nessler, W.

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Nicolaides, C. A.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Nieder, J. B.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Nikolov, I.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Nordling, C.

S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
[Crossref]

Nuernberger, P.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
[Crossref]

O’Shea, F. H.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Ogawa, S.

H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002).
[Crossref]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[Crossref]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

Ogilvie, J. P.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

Oron, D.

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

Palaudoux, J.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Palecek, D.

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

Passlack, S.

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

Paul, P. M.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Pazourek, R.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Penco, G.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Penent, F.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Perdomo-Ortiz, A.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

Petek, H.

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
[Crossref]

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002).
[Crossref]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[Crossref]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Pfeiffer, W.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Pflaum, J.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26, 3915–3925 (2018).
[Crossref]

Piecuch, M.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Piseri, P.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Plekan, O.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Prince, K. C.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Przystawik, A.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Pšencík, J.

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
[Crossref]

Pullerits, T.

O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
[Crossref]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

Puschnig, P.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Raczynski, A.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Radloff, W.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006).
[Crossref]

Raths, M.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Raymer, M. G.

Read, F. H.

P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983).
[Crossref]

Rebernik Ribic, P.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Reid, K. L.

K. L. Reid, “Photoelectron angular distributions,” Annu. Rev. Phys. Chem. 54, 397–424 (2003).
[Crossref]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Reutzel, M.

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
[Crossref]

Rhee, H.

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

Richter, M.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

Roedel, M.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

Roeding, S.

S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018).
[Crossref]

Rohleder, M.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

Ruetzel, S.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
[Crossref]

Sadat Mirian, N.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Saikin, S. K.

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

Sakurai, A.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

Sanders, J. N.

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

Sansone, G.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Sarpe-Tudoran, C.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Schneider, C.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Schreck, M. H.

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

Schröter, M.

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
[Crossref]

Schultze, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Seibt, J.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

Seidel, R.

R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
[Crossref]

Seideman, T.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

Shi, Q.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

Siegbahn, K.

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
[Crossref]

Siemens, M. E.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Sigalotti, P.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Silva-Acuña, C.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Silverman, K.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Silverman, K. L.

Smallwood, C. L.

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Smith, B. C.

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
[Crossref]

Soubatch, S.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Spampinati, S.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Spencer, A. P.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

Spezzani, C.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Spielmann, C.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

Squibb, R. J.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Stallberg, K.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Stefani, F. D.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Stiebig, H.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Stienkemeier, F.

D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
[Crossref]

M. Binz, L. Bruder, L. Chen, M. F. Gelin, W. Domcke, and F. Stienkemeier, “Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor,” Opt. Express 28, 25806–25829 (2020).
[Crossref]

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
[Crossref]

Stolow, A.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54, 89–119 (2003).
[Crossref]

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

Stranges, S.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

Strüber, C.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Suzuki, T.

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57, 555–592 (2006).
[Crossref]

Svensson, S.

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

Tamimi, A.

Tan, H.-S.

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

Tautz, F. S.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Tekavec, P. F.

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

Thielen, P.

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Titov, E.

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

Tiwari, V.

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Toma, E. S.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

Tuchscherer, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Tuladhar, S. M.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Turner, D. B.

D. B. Turner, “Standardized specifications of 2D optical spectrometers,” Results Chem. 1, 100001 (2019).
[Crossref]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

Uhl, D.

D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
[Crossref]

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

van Dijk, E. M. H. P.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

van Hulst, N. F.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Vella, E.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Verdozzi, C.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Vexiau, R.

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

Vezie, M. S.

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Viefhaus, J.

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

Villeneuve, D. M.

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

Viñas Boström, E.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Vogelsang, J.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Voronine, D. V.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Vrakking, M. J. J.

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Wallauer, R.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Wang, C.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Wang, Z.

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Westenhoff, S.

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

Widom, J. R.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

Winter, B.

R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
[Crossref]

Winter, M.

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Witkowski, M.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Wittenbecher, L.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

Witting, T.

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Wituschek, A.

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Wollenhaupt, M.

M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
[Crossref]

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Wu, G.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

Wu, M.-Y.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Yakovle, V. S.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

Yang, X.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

Zanni, M.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

Zanni, M. T.

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25, 7869–7883 (2017).
[Crossref]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

Zaremba, J.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Zavriyev, A.

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

Zawada, M.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

Zgierski, M. Z.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

Zhou, Z.

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

Zigmantas, D.

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
[Crossref]

Zuchowski, P. S.

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

ACS Nano (2)

L. Wittenbecher, E. Viñas Boström, J. Vogelsang, S. Lehman, K. A. Dick, C. Verdozzi, D. Zigmantas, and A. Mikkelsen, “Unraveling the ultrafast hot electron dynamics in semiconductor nanowires,” ACS Nano 15, 1133–1144 (2021).
[Crossref]

S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, “Observing multiexciton correlations in colloidal semiconductor quantum dots via multiple-quantum two-dimensional fluorescence spectroscopy,” ACS Nano 15, 4647–4657 (2021).
[Crossref]

Adv. Phys. (1)

F. Himpsel, “Angle-resolved measurements of the photoemission of electrons in the study of solids,” Adv. Phys. 32, 1–51 (1983).
[Crossref]

Angew. Chem. Int. Ed. (1)

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54, 11368–11386 (2015).
[Crossref]

Annu. Rev. Phys. Chem. (9)

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

R. Seidel, B. Winter, and S. E. Bradforth, “Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy,” Annu. Rev. Phys. Chem. 67, 283–305 (2016).
[Crossref]

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54, 89–119 (2003).
[Crossref]

K. L. Reid, “Photoelectron angular distributions,” Annu. Rev. Phys. Chem. 54, 397–424 (2003).
[Crossref]

H. Petek and S. Ogawa, “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals,” Annu. Rev. Phys. Chem. 53, 507–531 (2002).
[Crossref]

M. Wollenhaupt, V. Engel, and T. Baumert, “Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control,” Annu. Rev. Phys. Chem. 56, 25–56 (2005).
[Crossref]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57, 555–592 (2006).
[Crossref]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Chem. Sci. (1)

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Before Förster. Initial excitation in photosynthetic light harvesting,” Chem. Sci. 10, 7923–7928 (2019).
[Crossref]

Chem. Soc. Rev. (1)

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43, 2476–2491 (2014).
[Crossref]

J. Appl. Phys. (1)

S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
[Crossref]

J. Chem. Phys. (6)

D. M. Villeneuve, I. Fischer, A. Zavriyev, and A. Stolow, “Space charge and plasma effects in zero kinetic energy (ZEKE) photoelectron spectroscopy,” J. Chem. Phys. 107, 5310–5318 (1997).
[Crossref]

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149, 114107 (2018).
[Crossref]

D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas, “Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy,” J. Chem. Phys. 151, 024201 (2019).
[Crossref]

P. Malý, S. Mueller, J. Lüttig, C. Lambert, and T. Brixner, “Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy,” J. Chem. Phys. 153, 144204 (2020).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (3)

U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, “A high resolution ESCA instrument with X-ray monochromator for gases and solids,” J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1973).
[Crossref]

C. S. Fadley, “X-ray photoelectron spectroscopy: progress and perspectives,” J. Electron Spectrosc. Relat. Phenom. 178–179, 2–32 (2010).
[Crossref]

P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. H. D. Eland, and F. Penent, “Multielectron spectroscopy: Auger decays of the argon 2p hole,” J. Electron Spectrosc. Relat. Phenom. 156–158, 51–57 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, “Coherent multidimensional spectroscopy in the gas phase,” J. Phys. B 52, 183501 (2019).
[Crossref]

J. Phys. Chem. A (2)

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117, 6279–6287 (2013).
[Crossref]

A. A. S. Kalaee, F. Damtie, and K. J. Karki, “Differentiation of true nonlinear and incoherent mixing of linear signals in action-detected 2D spectroscopy,” J. Phys. Chem. A 123, 4119–4124 (2019).
[Crossref]

J. Phys. Chem. B (2)

T. Kunsel, V. Tiwari, Y. A. Matutes, A. T. Gardiner, R. J. Cogdell, J. P. Ogilvie, and T. L. C. Jansen, “Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems,” J. Phys. Chem. B 123, 394–406 (2019).
[Crossref]

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy,” J. Phys. Chem. B 116, 10757–10770 (2012).
[Crossref]

J. Phys. Chem. Lett. (5)

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9, 5654–5659 (2018).
[Crossref]

J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed sensing for multidimensional spectroscopy experiments,” J. Phys. Chem. Lett. 3, 2697–2702 (2012).
[Crossref]

O. Kühn, T. Mančal, and T. Pullerits, “Interpreting fluorescence detected two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 11, 838–842 (2020).
[Crossref]

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3, 503–510 (2012).
[Crossref]

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

J. Phys. E (1)

P. Kruit and F. H. Read, “Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier,” J. Phys. E 16, 313–324 (1983).
[Crossref]

Nano Lett. (4)

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15, 3472–3478 (2015).
[Crossref]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123–1127 (2005).
[Crossref]

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12, 813–819 (2012).
[Crossref]

D. Li, E. Titov, M. Roedel, V. Kolb, S. Goetz, R. Mitric, J. Pflaum, and T. Brixner, “Correlating nanoscale optical coherence length and microscale topography in organic materials by coherent two-dimensional microspectroscopy,” Nano Lett. 20, 6452–6458 (2020).
[Crossref]

Nat. Chem. (1)

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8, 705–710 (2016).
[Crossref]

Nat. Commun. (10)

S. Roeding and T. Brixner, “Coherent two-dimensional electronic mass spectrometry,” Nat. Commun. 9, 2519 (2018).
[Crossref]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref]

A. Lietard, C.-S. Hsieh, H. Rhee, and M. Cho, “Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy,” Nat. Commun. 9, 891 (2018).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref]

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, “Coherent multidimensional spectroscopy of dilute gas-phase nanosystems,” Nat. Commun. 9, 4823 (2018).
[Crossref]

M. Reutzel, A. Li, Z. Wang, and H. Petek, “Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light,” Nat. Commun. 11, 2230 (2020).
[Crossref]

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, “Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways,” Nat. Commun. 10, 4735 (2019).
[Crossref]

A. Wituschek, L. Bruder, E. Allaria, U. Bangert, M. Binz, R. Borghes, C. Callegari, G. Cerullo, P. Cinquegrana, L. Giannessi, M. Danailov, A. Demidovich, M. Di Fraia, M. Drabbels, R. Feifel, T. Laarmann, R. Michiels, N. Sadat Mirian, M. Mudrich, I. Nikolov, F. H. O’Shea, G. Penco, P. Piseri, O. Plekan, K. C. Prince, A. Przystawik, P. Rebernik Ribič, G. Sansone, P. Sigalotti, S. Spampinati, C. Spezzani, R. J. Squibb, S. Stranges, D. Uhl, and F. Stienkemeier, “Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Nat. Photonics (3)

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676 (2018).
[Crossref]

W. Decking, S. Abeghyan, and P. Abramian, et al., “A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator,” Nat. Photonics 14, 391–397 (2020).
[Crossref]

M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, “Perfect absorption in nanotextured thin films via Anderson-localized photon modes,” Nat. Photonics 9, 663–668 (2015).
[Crossref]

Nat. Phys. (2)

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10, 505–509 (2014).
[Crossref]

Nature (5)

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401, 52–54 (1999).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, and H. Petek, “Plasmonic topological quasiparticle on the nanometre and femtosecond scales,” Nature 588, 616–619 (2020).
[Crossref]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref]

New J. Phys. (1)

A. Wituschek, O. Kornilov, T. Witting, L. Maikowski, F. Stienkemeier, M. J. J. Vrakking, and L. Bruder, “Phase cycling of extreme ultraviolet pulse sequences generated in rare gases,” New J. Phys. 22, 092001 (2020).
[Crossref]

Opt. Express (6)

Phys. Chem. Chem. Phys. (2)

L. Bruder, M. Mudrich, and F. Stienkemeier, “Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules,” Phys. Chem. Chem. Phys. 17, 23877–23885 (2015).
[Crossref]

P. Malý, J. Lüttig, S. Mueller, M. H. Schreck, C. Lambert, and T. Brixner, “Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers,” Phys. Chem. Chem. Phys. 22, 21222–21237 (2020).
[Crossref]

Phys. Rev. A (2)

M. Witkowski, R. Munoz-Rodriguez, A. Raczyński, J. Zaremba, B. Nagórny, P. S. Żuchowski, R. Ciuryło, and M. Zawada, “Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto–optical trapping of Rb and Hg,” Phys. Rev. A 98, 053444 (2018).
[Crossref]

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Control of interferences in an Autler-Townes doublet: symmetry of control parameters,” Phys. Rev. A 68, 015401 (2003).
[Crossref]

Phys. Rev. Lett. (6)

H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
[Crossref]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[Crossref]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[Crossref]

F. V. de A. Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref]

T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaétre, S. Bouchoule, J. Bloch, and S. Cundiff, “Excitation ladder of cavity polaritons,” Phys. Rev. Lett. 125, 067403 (2020).
[Crossref]

Phys. Rev. X (1)

M. Reutzel, A. Li, and H. Petek, “Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces,” Phys. Rev. X 9, 011044 (2019).
[Crossref]

Physics Letters (1)

S. Hagström, C. Nordling, and K. Siegbahn, “Electron spectroscopy for chemical analyses,” Physics Letters 9, 235–236 (1964).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. USA 104, 14190–14196 (2007).
[Crossref]

Proc. R. Soc. London A (1)

G. V. Marr, D. M. Creek, and R. W. Ditchburn, “The photoionization absorption continua for alkali metal vapours,” Proc. R. Soc. London A 304, 233–244 (1968).
[Crossref]

Prog. Surf. Sci. (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Rep. Prog. Phys. (1)

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69, 1897–2003 (2006).
[Crossref]

Results Chem. (1)

D. B. Turner, “Standardized specifications of 2D optical spectrometers,” Results Chem. 1, 100001 (2019).
[Crossref]

Rev. Sci. Instrum. (2)

W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies,” Rev. Sci. Instrum. 85, 125112 (2014).
[Crossref]

D. Uhl, L. Bruder, and F. Stienkemeier, “A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy,” Rev. Sci. Instrum. 92, 083101 (2021).
[Crossref]

Sci. Rep. (1)

E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson, C. Silva-Acuña, and E. R. Bittner, “Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells,” Sci. Rep. 6, 29437 (2016).
[Crossref]

Science (8)

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 1464–1468 (2009).
[Crossref]

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, and U. Höfer, “Tracing orbital images on ultrafast time scales,” Science 371, 1056–1059 (2021).
[Crossref]

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318, 1287–1291 (2007).
[Crossref]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krauszl, and V. S. Yakovle, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref]

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Other (2)

S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, 2013).

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Optical pulse sequence to excite and ionize the sample. The 2DES signal is induced by laser pulses 1–4. A fifth UV pulse ionizes the sample afterward. Pulse delays $\tau ,T,t,\Delta$ are indicated along with the modulation of the phase ${\phi _i}$ of pulses 1–4. (b) Experimental setup. Reg. amplifier, Ytterbium-based regenerative femtosecond amplifier; NOPA, noncollinear optical parametric amplifier; FHG, fourth-harmonic generation; PM-2DES setup, phase-modulated 2D electronic spectroscopy setup; Prism comp., prism compressor; UHV, ultrahigh vacuum; Mag. bottle, magnetic bottle time-of-flight electron spectrometer; ADC, analog-to-digital converter; Amp, pre-amplifier; TDC, time-to-digital converter; ULIA, universal lock-in amplifier.
Fig. 2.
Fig. 2. Static photoelectron spectra. (a) Relevant energy levels of rubidium along with the UV photon energy of the ionization pulse and expected kinetic energies of photoelectrons. IP, ionization potential. (b) Photoelectron spectrum of Rb atoms produced by combined interaction with one NOPA excitation pulse (780 nm) and one UV ionization pulse (260 nm) and (c) produced by multiphoton ionization with only the NOPA pulse. In (c), the boxcar-averaged KE distribution is also shown (green) for a better visualization of the peak width. Dashed vertical lines indicate the theoretical kinetic energies for the different bound states of Rb. Red bars indicate integration intervals for extraction of the 2D spectra shown in Figs. 4(a)–4(c).
Fig. 3.
Fig. 3. (a) Simplified level scheme, featuring ground $|g\rangle$, first excited $|e\rangle$, second excited $|f\rangle$, and ionic continuum states $|i\rangle$. States $|g - f\rangle$ correspond to the Rb states ${{5S}_{1/2}}$, ${{5P}_{3/2(1/2)}}$, and ${{5D}_{5/2(3/2)}}$, respectively. (b) Example 2DES signal contributions described by double-sided Feynman diagrams. SE, stimulated emission; GSB, ground-state bleach; ESA, excited state absorption. For each contribution, two pathways exist, differing by the population state after the fourth light–matter interaction (red) as well as by a $\pi$ phase shift, indicated by the ${+}/ -$ label. Phasing convention is chosen such that ${{\rm SE}_1}$ contributes with positive amplitude to the overall signal. Arrows (black for NOPA pulses, blue for ionization pulse) indicate the light–matter interactions. Labels ${\pm}{\phi _i}$ show the phase contributions to the final signal resulting in the characteristic signal beating [Eq. (1)].
Fig. 4.
Fig. 4. (a)–(c) Differential 2D spectra extracted from selected regions of the electron KE, as marked by red bars in Fig. 3(a). Labels indicate the individual electron orbitals that are probed. d) Integral 2D spectrum obtained from integration over the whole electron KE. (e) Horizontal cuts through the 2D spectra [at ${\omega _t} = 12826\;{{\rm cm}^{- 1}}$ for (a) and (c), and at ${\omega _t} = 12891\;{{\rm cm}^{- 1}}$ for (b)] visualize the SNR of each 2D spectrum. For comparison, the noise level of the corresponding integral 2D spectrum is shown as gray background. The noise level is defined as the rms value of the signal amplitude in a square area of $340\;{{\rm cm}^{- 1}} \times 340\;{{\rm cm}^{- 1}}$ evaluated in the upper right corner of the 2D spectra. All 2D spectra show the absorptive part of the third-order response.
Fig. 5.
Fig. 5. Differential 2D spectra extracted from the partially overlapping photoelectron peaks of the ${{5\rm P}_{1/2}}$(${{5\rm P}_{3/2}}$) states (see according labels) demonstrating the resolving power of the PES.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ω ± = ( Ω 1 + Ω 2 ) ± ( Ω 3 Ω 4 )

Metrics