Abstract

As single-photon imaging becomes progressively more commonplace in sensing applications such as low-light-level imaging, three-dimensional profiling, and fluorescence imaging, there exist a number of fields where multispectral information can also be exploited, e.g., in environmental monitoring and target identification. We have fabricated a high-transmittance mosaic filter array, where each optical filter was composed of a plasmonic metasurface fabricated in a single lithographic step. This plasmonic metasurface design utilized an array of elliptical and circular nanoholes, which produced enhanced optical coupling between multiple plasmonic interactions. The resulting metasurfaces produced narrow bandpass filters for blue, green, and red light with peak transmission efficiencies of 79%, 75%, and 68%, respectively. After the three metasurface filter designs were arranged in a ${64} \times {64}$ format random mosaic pattern, this mosaic filter was directly integrated onto a CMOS single-photon avalanche diode detector array. Color images were then reconstructed at light levels as low as approximately 5 photons per pixel, on average, via the simultaneous acquisition of low-photon multispectral data using both three-color active laser illumination and a broadband white-light illumination source.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. INTRODUCTION

Single-photon imaging is a rapidly expanding field of research with emerging applications in three-dimensional profiling [1], kilometer-range depth profiling [2], three-dimensional imaging of moving targets [3], astrophysics [4], and fluorescence lifetime imaging (FLIM) [5]. Simultaneous single-photon acquisition of multiple wavelengths has been used for target identification [69] and physiological foliage parameter measurement [10]; however, these applications involve complex and lossy optical routing of the received signal to independently acquire discrete multiple wavelengths. Large-format complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) arrays provide a new approach for fast image acquisition. These large-format SPAD arrays are becoming more technically feasible [11] and are already finding use in areas such as 2D imaging [12], depth profiling [13,14], and FLIM [15,16].

Recently, the use of metamaterials and their 2D counterparts, namely, metasurfaces [17], has increased considerably in the field of nanophotonics. Plasmonics [18,19] provide efficient coupling of photons with free-electron oscillation modes at the metal surfaces, thus enabling manipulation of light at the nanoscale. Plasmonic metasurfaces [20] have gained prominence in this field due to their ability to simultaneously, and individually, control the phase [2124], momentum [25], amplitude [26], optical nonlinearities [24,27,28], wavefront steering [29,30], and polarization [23,31] of light. Such plasmonic metasurfaces have considerable utility in the realization of compact photonic devices [32]—fabricated by exploiting tunable resonant properties controlled by near-field coupling [33]. Such tunable resonant properties have been useful in holography [3437], lensing [38,39], and imaging applications [4043]. Plasmonic microfiltering enables the fabrication of large-scale mosaic patterns comprising thousands of filters centered at various wavelengths. Given these wide-ranging applications, ultra-thin plasmonic metasurfaces operating in transmission mode have attracted particular research interest; however, these metasurfaces still suffer from high losses.

Higher transmission and low out-of-band rejection produce better color contrast and selectivity when metasurfaces are used as visible color filters. Plasmonic metasurfaces have the advantage of requiring only a single lithography step to filter any wavelength, and they are significantly thinner and easier to fabricate compared with alternative technologies such as dichroic films and polymer dye filters. Dichroic filters require different thicknesses for different wavelengths; additionally, for both dichroic and dye filters, multiple lithographic steps are required when filtering multiple wavelengths. Indeed, the need for only a single lithography step has significant benefits in the design and fabrication of color filter arrays, enabling the freedom to alter filter designs without the need for complex process modifications. The number of fabrication processes required by more mature color filter technologies, such as thin-film or dye-based filters, increases with the number of filter designs required, restricting most arrays to three-color designs. The development of high-quality plasmonic-metasurface-based filters, however, would permit the inclusion of filters selected for any number of wavelengths, including the near-IR and short-wave IR regions [44], enabling hyperspectral imaging. It is also relatively simple to incorporate additional optical features into plasmonic metasurfaces, such as polarization sensitivity for multispectral polarimetry, or even lensing to increase photodetection. Furthermore, plasmonic metasurfaces are more robust than existing technologies, as they are not susceptible to degradation after long-term exposure to UV light, high temperatures, or humidity [40], and could therefore be used in more extreme environments.

Plasmonic filters have been fabricated using nanoholes [4547] and coaxial nanoholes [47]; however, the optical transmission is poor at ${\sim}{45}\%$. Higher optical transmission can be achieved using asymmetric cross voids [33,48] and gratings [4951] (${\sim}{60}\%$), though such structures are highly polarization dependent and there is generally a trade-off between the bandwidth of the filter and the level of peak transmission [44]. This means that we may have to reduce the overall transmission to achieve narrower bandpass features. Polarization insensitivity with 60% transmission has been achieved using circular nanoholes [52] in a metal–insulator–metal configuration, but this design required a complex, multistage fabrication approach and had large out-of-band transmission (poor rejection ratios).

 

Fig. 1. Schematic of the proposed plasmonic metasurface design. (a) Schematic of the visible plasmonic metasurface designed on a borosilicate substrate. (b) The unit cell is highlighted with period $p$, long axis $a$, and short axis $b$ of the elliptical nanohole array. A ratio $\frac{b}{a}$ of 0.85 was used to maintain polarization insensitivity [44]. Circular nanoholes were created with control radii ${r_1}$ and ${r_2}$. (c) As shown in the schematic, unpolarized light (${E_{ix,y}}$) is normally incident in the ${k_z}$ direction. The nanoholes are over-etched into the substrate by 50 nm. The Al thickness, $d$, is 70 nm.

Download Full Size | PPT Slide | PDF

2. PLASMONIC METASURFACE DESIGN

A. Theory and Simulation

Herein, we present a design that requires only a single lithography step, is polarization insensitive, and (to our knowledge) has the highest recorded transmission in the visible spectrum. In this design, ellipses alternately oriented at 45° and 135°, together with circular nanoholes, were defined in a thin sheet of aluminum [44,53]. The holes were created by etching the metal film and then extending the etch into the substrate below the film. Figure 1(a) shows a schematic of the plasmonic metasurface design. By scaling the dimensions of both the elliptical and circular nanoholes, different wavelengths of light can be selectively transmitted. The unit cell, shown in Fig. 1(b), relies on the design principles presented in [44], wherein the unit cell period $p$ is obtained from the following equation [54]:

$${\lambda _{\rm SPP}} = \frac{p}{{\sqrt {\frac{4}{3}({i^2} + ij + {j^2})}}}\sqrt {\frac{{{\varepsilon _m}{\varepsilon _d}}}{{{\varepsilon _m} + {\varepsilon _d}}}} ,$$
where ${\lambda _{\rm SPP}}$ is the wavelength corresponding to the transmission dip that occurs immediately before the extraordinary optical transmission (EOT) [54] at the desired transmission wavelength, $(i,j)$ is the diffraction grating order, which is (1, 0) in our case, and ${\varepsilon _m}$ and ${\varepsilon _d}$ are the permittivities of the metal and dielectric, respectively. In order to obtain a high E-field confinement, the nanoholes must be subwavelength [44], so the short axis of the elliptical nanoholes ($b$) were initially approximated as $\lambda /{3}$. The ratio of the long ($a$) to short ($b$) axis of the elliptical holes is fixed at 0.85, because a ratio $\frac{b}{a}$ between 0.8 and 0.9 is shown to maintain polarization insensitivity [44]. In addition to these ellipses, six circular holes are present; the middle holes have radius ${r_1}$ and the four corner holes have radius ${r_2}$ [see Fig. 1(b)]. In this study we used two designs, designated as A and B. For design A, ${r_1} = {r_2} = r$ such that $\frac{{2r}}{a} \approx 1$, whereas for design B, ${2}{r_1} \approx a$, and ${r_2} \lt {r_1}$. From these starting values, simulations were performed using Lumerical finite-difference time domain (FDTD) with the geometry of $b$ varied in steps of $\pm 10\; {\rm nm}$, with $a$ and $r$ altered according to the relations stated. A 250 nm ${{\rm SiO}_2}$ cap layer is required to ensure the normalized optical impedance of the metasurface is approximately 1 [42,44], resulting in maximum transmission at resonant wavelengths with minimal backreflection. The cross section of a typical metasurface is shown in Fig. 1(c) with the unpolarized light, ${{E}_{{ix},{y}}}$, normally incident from the substrate onto the nanoholes. By varying the period $p$ and scaling the dimensions of the nanoholes, metasurfaces were designed to select for blue, green, and red light. As a final consideration, it was necessary to choose a suitable metal film thickness $d$. For this work, 70 nm was chosen based on an experimental study, presented in Fig. S1 of Supplement 1.

The high transmission observed in these devices is attributed to several factors, one of which is the over-etching into the substrate. The differences in the spectral response between the over-etched and optimally etched devices are shown in Figs. S2, S3, and S4 in Supplement 1. The increased transmission of the over-etched devices compared to that of the standard etched devices is ascribed to the incident light being scattered more efficiently into the nanoholes [55]. The incident light is found to combine with quasi-cylindrical waves (QCWs) launched from the nanoholes, as ${{E}_{{ix},{y}}}$ interacts with the guided modes confined in the nanoholes. A closer analysis of the design reveals that destructive interference between QCWs [5659] and surface plasmon polaritons (SPPs) oscillating on the surface produces a dip in transmission, aiding out-of-band rejection, while a high transmission is observed due to constructive coupling between the QCW, SPPs, and localized surface plasmon resonance (LSPR). This differs from the standard designs, in which only the resonant coupling between the incident light and SPPs contributes to the EOT [54].

B. Fabrication

The substrate was a borosilicate glass slide with the dimensions ${20}\;{\rm mm} \times {20}\;{\rm mm}$ and a thickness of 515 µm. Dry-etching tools were used to etch the elliptical and circular nanohole designs in a thin layer of aluminum. 70 nm of Al was deposited using a Plassys electron beam (e-beam) evaporator, followed by an inductively coupled plasma deposition of a 50 nm thick ${{\rm Si}_3}{{\rm N}_4}$ film. The ${{\rm Si}_3}{{\rm N}_4}$ acted as an adhesion layer for the e-beam resist ZEP520A. The e-beam resist was spin coated at 2250 rpm for 60 s and baked in the oven at 18°C for 40 min. Exposed patterns were developed in $o$-Xylene for 35 s at 23.5°C, followed by a rinse in isopropyl alcohol (IPA) for 30 s. An oxygen ash in the Oxford Instruments Plasmalab 80 Plus reactive ion etcher (RIE) was followed by a ${{\rm Si}_3}{{\rm N}_4}$ etch using ${{\rm CHF}_3}/{{\rm O}_2}$ chemistry. Immediately after the ${{\rm Si}_3}{{\rm N}_4}$ etch, the samples were transferred into another RIE etcher (Oxford Instruments PlasmaPro 100 System) to etch the Al layer using a ${{\rm SiCl}_4}$ chemistry. In order to achieve the over-etching into the substrate, the samples were given another ${{\rm CHF}_3}/{{\rm O}_2}$ etch (80 Plus RIE), followed by an ${{\rm O}_2}$ ash and another ${{\rm CHF}_3}/{{\rm O}_2}$ etch (1 min 40 s) in the same RIE to remove any residue of the ZEP-520A resist and the ${{\rm Si}_3}{{\rm N}_4}$ adhesion layer, respectively. The substrates were then cleaned in acetone and IPA and imaged with the FEI Nova NanoSEM 630. A cap layer of 250 nm of silicon dioxide was deposited on top of the Al layer using a plasma-enhanced chemical vapor deposition process.

C. RGB Design Specs

Figure 2 shows scanning electron microscopy images along with experimental versus simulated transmission spectra of each filter. Blue and green color filters followed design A specifications, while design B was found to achieve a higher transmission and narrower linewidth for the red filter. The full design specifications for each filter are provided in Table 1. It was found that for dimensions smaller than the proposed designs, we observe a reduction in transmission, whereas for larger dimensions we observe no increase in transmission but an exponential increase in bandwidth and hence a reduction in color fidelity.

A 10% increase in transmission is observed for the red filter using design B over design A, due to the higher E-field confinement in the larger elliptical holes combined with a narrower LSPR that is expected from smaller circular holes (as shown in Fig. S5 of Supplement 1). When applied to the green and the blue filters, the same modification did not lead to an improvement, as described in Fig. S6 of Supplement 1.

 

Fig. 2. Characterization of the fabricated visible metasurface filters. Scanning electron microscopy (SEM) images and micrographs (insets) of the fabricated metasurface design for (a) blue, (b) green, and (c) red color filters. Experimental and Lumerical FDTD transmission spectra of the (d) blue, (e) green, and (f) red plasmonic metasurfaces. The difference in transmission between design A and design B for red plasmonic metasurface is shown.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Filter Design Specifications

3. MOSAIC FILTER FABRICATION

High-transmission plasmonic metasurface filters are ideal for creating mosaic filters, particularly in applications where the signals are very weak. To highlight the practicality of using such a device, three designs for blue, green, and red were randomly arranged in a large area to form a mosaic filter covering the active regions of a ${64} \times {64}$ SPAD array [60], with each design covering one pixel of the array. The mosaic filter in this instance uses a random pattern of approximately equal quantities (33.33%) of each design (blue, green, and red). The arrangement is further explained in Supplement 1. The random location of the three designs in the mosaic filter reduces the probability of false coloring and Moiré interference [61] when the full RGB image is reconstructed. Although the image reconstruction step, known as demosaicing, can become more complex when using random masks, the additional overhead is negligible in practice and this approach remains beneficial, as the reduction in errors such as Moiré patterns related to periodic color features in a target scene can be valuable [62]. Note that if a larger number of designs are used, it might be more efficient to adopt a pseudorandom approach to filter allocation to ensure homogeneous coverage of each design. In that case, mask design tools for coded apertures [63] may be used.

4. SINGLE-PHOTON IMAGING

The resulting mosaic filter was integrated with a SPAD image sensor, which was used to perform multispectral imaging of targets in two different approaches. Targets were imaged under active, targeted laser illumination and under passive, white-light flood illumination.

A. Filter–SPAD Integration

The image sensor was a ${64} \times {64}$ Si CMOS SPAD array with a 61.5 µm pixel pitch and a square active area with a 11.6 µm side length, resulting in a fill factor of 3.55% [60]. The imager used in this work is capable of counting single photons within a predetermined frame duration, with no precise timing circuitry. An ACCµRA100 flip-chip bonder was used to integrate the two components with the use of a UV-sensitive optical adhesive. The 11.6 µm active area within a 61.5 µm pixel pitch allows a linear alignment tolerance of ${\sim}{25}\;\unicode{x00B5}{\rm m}$ in each direction. The flip-chip bonder provides a consistent bonding accuracy of ${\leq}{1}\;\unicode{x00B5}{\rm m}$, while the e-beam write process has a maximum error of ${\sim}{0.5}\;\unicode{x00B5}{\rm m}$ in the positioning of each filter. These small error margins, compared to the ${\sim}{25}\;\unicode{x00B5}{\rm m}$ tolerance, ensure there is no filter cross talk between adjacent pixels in this integrated assembly. An example of an integrated device is shown in Fig. 3, and further details about the flip-chip bonding process are provided in Section 4 of Supplement 1.

 

Fig. 3. (a) Mosaic plasmonic filter integrated with ${64} \times {64}$ SPAD array taken with macro lens CCD camera. (b) Composite reflection micrograph taken at $\times {5}$ magnification.

Download Full Size | PPT Slide | PDF

 

Fig. 4. $4\!f$ optical sytem used for filter transmission measurements and calibration. The variable aperture stop allowed varying-illumination $f$-numbers to be incident on the SPAD array.

Download Full Size | PPT Slide | PDF

 

Fig. 5. Transmission spectra for (a) blue, (b) green, and (c) red filter sets when illuminated at $f/{8}$ and $f/{2}$. (d) Entire spectrum shown at $f/{8}$.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Uniformity of each of the three filter sets measured at (a) $\lambda = {500}\;{\rm nm}$, (b) $\lambda = {580}\;{\rm nm}$, and (c) $\lambda = {680}\;{\rm nm}$. (d) Normalized distribution of average counts in the bare chip at all three wavelengths. In each case the data are displayed as transmission histograms with the Gaussian trend fitted. The standard deviation $\sigma$ of the fit is provided for each case.

Download Full Size | PPT Slide | PDF

B. Active Laser Illumination

An NKT supercontinuum laser combined with an acousto-optic tunable filter provided the illumination source for the active imaging system. This allowed the transmission spectra of each filter set (R, G, B) to be recorded by the illumination of the device at discrete wavelengths from $\lambda = {460}\;{\rm nm}$ to $\lambda = {1100}\;{\rm nm}$. A $4\!f$ optical system is employed in combination with a pair of engineered diffusers (D1, D2) to ensure a flat, uniform illumination profile and a central variable aperture stop to control the $f$-number. The optical system is shown in Fig. 4.

The transmission of each pixel was calculated as the number of counts recorded at each wavelength, divided by the average number of counts recorded by an identical device without an integrated filter under the same illumination conditions. Hot pixels—those with significantly higher than average dark count rates—can skew results if overlooked. All such pixels are identified from the detector dark count distributions using the method described in [64] and discarded prior to any analysis being conducted. This led to the removal of 206 (5%) of the pixels on the mosaic filter bonded chip and 149 (3.6%) of those on the bare chip.

1. F-Number

The average transmission spectra of each filter set are shown in Fig. 5 at $f/{8}$ and $f/{2}$, corresponding to maximum angles of incidence (i.e., half cone angles) of 3.6° and 14.0°, respectively. The spectra show negligible angular sensitivity with respect to transmission and peak wavelength shift, which are typically found in thin-film-based bandpass filters, demonstrating the robustness of the metasurface design. The peak transmission wavelengths were identified at $\lambda = {470}\;{\rm nm}$ for the blue filter set, $\lambda = {580}$ for the green filter set, and $\lambda = {680}\;{\rm nm}$ for the red filter set.

2. Uniformity

The filters demonstrate high levels of uniformity, which were determined by measuring each of the three filter sets to provide a histogram of the peak transmission values. These histograms were fitted using a Gaussian, as shown in Fig. 6. The standard deviation ${ \sigma}$ of the transmission values of each filter set is equivalent to that of the pixels in the bare chip over all wavelengths. We can therefore attribute the variation in transmission peak values predominantly to non-uniformities in SPAD detection efficiency, rather than any spread in peak transmission across the metasurface filters.

3. Imaging

The optical setup used for target imaging is shown in Fig. 7, with two diffusers (D1, D2) used to expand the beam and ensure uniform illumination and a 75 mm focal length lens used to direct the light on the target scene located at an ${\sim}{50}\;{\rm cm}$ stand-off distance. A 50 mm focal length Canon single lens reflex (SLR) camera lens was used to image the return photons from the target onto the SPAD array. The NKT supercontinuum laser source provides the three-color illumination of the target scene, emitting the three discrete wavelengths of peak filter transmission simultaneously: $\lambda = {470}$, 580, and 680 nm.

 

Fig. 7. Active imaging system in a bistatic configuration. The illumination is provided by a tunable laser source, diffusers (D1, D2), and an illumination lens. The receiving channel is composed of an objective lens ($f = {50}\;{\rm mm}$, $f/{1.8}$) and the SPAD array.

Download Full Size | PPT Slide | PDF

Different targets were selected for imaging of varying complexity, surface texture, and reflectivity. The targets, shown in Fig. 8, include (a) a standard three-color printed target consisting of squares, (b) a printed United Kingdom flag, (c) a rubber ladybug model on a rubber leaf, (d) a rubber owl model, and (e) a toy figure. A stand-off distance of ${\sim}{50}\;{\rm cm}$ was used, resulting in a field of view of ${\sim}{3}\;{\rm cm} \times {3}\;{\rm cm}$.

 

Fig. 8. Targets used for imaging with multispectral laser illumination. Dashed lines on (a) and (b) represent approximate camera fields of view of ${3}\;{\rm cm} \times {3}\;{\rm cm}$.

Download Full Size | PPT Slide | PDF

The SPAD imager was initially set to record 100 frames at 5 ms exposure per frame. These frames were then summed to provide a total exposure time of 500 ms per target. Figure 9 shows the corresponding raw intensity measurements prior to any image reconstruction or preprocessing.

 

Fig. 9. Raw intensity images from the SPAD imager for multispectral laser illumination. Intensity values are shown as detected photons per pixel.

Download Full Size | PPT Slide | PDF

Using the proposed image reconstruction algorithm (described in more detail in Section 5), we are able to extract a set of RGB values for each pixel. Examples of color reconstructions are shown in Fig. 10.

 

Fig. 10. Active imaging color reconstructions of each target for multispectral laser illumination. The target field was ${3}\;{\rm cm} \times {3}\;{\rm cm}$.

Download Full Size | PPT Slide | PDF

In order to study the number of photons required to extract high-fidelity color images, additional measurements were acquired using the toy figure with reduced total exposure time. The average detected photons per pixel were calculated from returns on the target only, ignoring those returning from the white backplane, which would normally be expected to return a far higher number of photons. In Fig. 11 it can be seen that a reasonable color quality is maintained down to as few as ${\sim}{20}$ detected photons per pixel (i.e., ${\sim}{7}$ photons per channel, on average), using a single 5 ms exposure. Below this level, significant image degradation is observed. Combined background photons and dark counts contribute on average 0.67 counts/ms per pixel. It is worth noting here that when 5 photons per pixel are detected on average, the impact of shot noise becomes significant and the image restoration algorithm must still decide how to allocate these potentially spurious counts to the three RGB channels.

 

Fig. 11. Color image reconstruction of the toy figure when the exposure duration is progressively reduced using multispectral laser illumination.

Download Full Size | PPT Slide | PDF

C. Passive White-Light Illumination

While laser illumination is useful for many applications including lidar, other areas such as astronomy will require a passive imaging approach. To demonstrate passive imaging, a thermal white-light source was introduced to flood illuminate the scene, replacing the direct laser illumination and its optics.

Data were collected using the same five targets, with the illumination power set approximately equal to that used for the active imaging system, determined by count rate recorded by the detector. A 500 ms total exposure time was used, resulting in ${\sim}{2500}$ average photons per pixel returning from the targets (compared to 2176 at the same exposure with the laser). The resulting reconstructions are provided in Fig. 12.

 

Fig. 12. Passive imaging color reconstruction of each target.

Download Full Size | PPT Slide | PDF

The differences in terms of image reconstruction, compared to Fig. 10, are clear. The broadband nature of the white-light source accesses the entire spectral width of each filter, allowing for a much more realistic reconstruction of the white parts of the targets, which proved difficult to obtain using the three discrete wavelengths of the active illumination setup. This is mitigated, however, by the narrowband nature of the laser illumination, which effectively reduces the spectral broadness of the filters, providing sharper colors and a greater contrast.

5. IMAGE RECONSTRUCTION ALGORITHM

To extract color information from a single intensity reading per pixel, we model $I(n)$, the measured intensity in the $n$th pixel, as a linear combination of the contributions of the individual illumination wavelengths and background as follows:

$$I(n) = {\rm B}(n) + \sum\limits_{t = 1}^{t = 3} {{{\rm A}_i}(n){l_t}(n)} ,$$
where the parameters $\{{{\rm A}_i}(n),{\rm B}(n)\}$ are obtained during the calibration. Here, ${{\rm A}_i}(n)$ represents the transmission coefficient A of the filter over pixel $n$ at illumination wavelength ${\lambda _i}$. The parameter ${I_i}(n)$ represents the incident light intensity on pixel ${ n}$ at that wavelength, and ${\rm B}(n)$ represents the background counts at that pixel. By considering the intensities recorded in neighboring pixels, in combination with an inpainting (matrix completion) technique, it was possible to recover $\{{I_1}(n),{I_2}(n),{I_3}(n)\}$ for each pixel from the single intensity reading. The estimation problem based on the equation above can be recast as a linear source separation problem with compressively sampled measurements, and it can be solved efficiently using, for instance, convex optimization techniques. Here we developed an algorithm similar to that used in earlier work, where the inpainting is performed using a total-variation optimization, which promotes smooth intensity variations [7]. In this work, the method was adapted to use multiple ${{\rm A}_t}$ values that were assumed to be nonzero in each filter. The contributions from each wavelength are then considered to represent the three constituents of the RGB color model [65] and combined accordingly to provide the “true” color.

6. CONCLUSION

We have demonstrated plasmonic metasurface wavelength filters comprising nanocircles and nanoellipses that achieve ultrahigh transmission efficiency for blue, green, and red light by simultaneously enhancing three optical phenomena: LSPR, SPPs, and QCWs. Transmission efficiencies of 68%, 75%, and 79% were achieved for red, green, and blue wavelengths, respectively. One advantage of the single lithography approach using plasmonic metasurfaces is that we are not limited to only three colors, but rather can access a range that covers the visible and IR parts of the spectrum by simply changing the geometry of the elliptical and circular nanoholes and the unit cell period.

To demonstrate the applicability of these metasurfaces to color imaging on a single focal plane array, a mosaic filter array was fabricated and flip-chip bonded to a ${64} \times {64}$ SPAD array to provide a robust, compact integrated detector assembly. Active and passive color imaging in the sparse photon regime was demonstrated using a single exposure. This work demonstrates the potential benefits of using metasurface mosaic filter arrays, which may be used to enhance a number of low-light-level imaging applications. These applications could include lidar-based 3D imaging, low-light-level color passive imaging, or FLIM. The potential for utilizing metasurfaces in this manner extends beyond simple spectral filtering, due to the ability of metasurfaces to incorporate multiple optical features such as micro-concentration or phase shifting. The metasurfaces described in this paper were deliberately designed for polarization insensitivity; however, simple alterations to the shape and orientation of the elliptical nanoholes allow polarization control, which can be utilized for full-field polarimetric imaging. Furthermore, the metasurface color filter array designs may even be realized using photolithography rather than the e-beam lithography presented here, with modern techniques able to attain sub-10-nm feature sizes [66].

To the best of our knowledge, this represents the first single-photon color image reconstruction achieved using a SPAD image sensor integrated with a mosaic filter array, thus facilitating the rapid acquisition of sparse photon color images in both two and three dimensions.

Funding

Royal Academy of Engineering (RF201617/16/31); Engineering and Physical Sciences Research Council (EP/M01326X/1, EP/N003446/1, EP/T00097X/1).

Acknowledgment

The authors thank Stephen Thoms, Colin Roberts, and Thomas Reilly for technical support in the device fabrication, and the James Watt Nanofabrication Centre staff. We also thank Dr. Aongus McCarthy for his input in the optical system design.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES

1. G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007). [CrossRef]  

2. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017). [CrossRef]  

3. J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019). [CrossRef]  

4. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007). [CrossRef]  

5. S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015). [CrossRef]  

6. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005). [CrossRef]  

7. Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018). [CrossRef]  

8. R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017). [CrossRef]  

9. X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018). [CrossRef]  

10. A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014). [CrossRef]  

11. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

12. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016). [CrossRef]  

13. X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018). [CrossRef]  

14. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014). [CrossRef]  

15. A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018). [CrossRef]  

16. I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016). [CrossRef]  

17. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014). [CrossRef]  

18. T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).

19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

20. S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018). [CrossRef]  

21. L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016). [CrossRef]  

22. C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017). [CrossRef]  

23. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011). [CrossRef]  

24. S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018). [CrossRef]  

25. D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999). [CrossRef]  

26. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006). [CrossRef]  

27. E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016). [CrossRef]  

28. A. E. Minovich, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015). [CrossRef]  

29. Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013). [CrossRef]  

30. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015). [CrossRef]  

31. P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017). [CrossRef]  

32. F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018). [CrossRef]  

33. L. Lin and A. Roberts, “Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,” Opt. Express 19, 2626–2633 (2011). [CrossRef]  

34. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015). [CrossRef]  

35. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015). [CrossRef]  

36. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016). [CrossRef]  

37. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015). [CrossRef]  

38. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017). [CrossRef]  

39. C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018). [CrossRef]  

40. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012). [CrossRef]  

41. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012). [CrossRef]  

42. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012). [CrossRef]  

43. E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017). [CrossRef]  

44. Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018). [CrossRef]  

45. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010). [CrossRef]  

46. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010). [CrossRef]  

47. R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017). [CrossRef]  

48. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016). [CrossRef]  

49. C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017). [CrossRef]  

50. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010). [CrossRef]  

51. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013). [CrossRef]  

52. N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018). [CrossRef]  

53. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013). [CrossRef]  

54. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]  

55. J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018). [CrossRef]  

56. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009). [CrossRef]  

57. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012). [CrossRef]  

58. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]  

59. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006). [CrossRef]  

60. C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019). [CrossRef]  

61. H. Taguchi and M. Enokido, “Technology of color filter materials for image sensor,” in Proceedings of International Image Sensor Workshop (2011), pp. 8–11.

62. R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005). [CrossRef]  

63. C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging,” J. Opt. Soc. Am. A 33, 2312–2322, 2016. [CrossRef]  

64. P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019). [CrossRef]  

65. R. Hirsch, Exploring Colour Photography: a Complete Guide (Laurence King, 2004).

66. R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
    [Crossref]
  2. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
    [Crossref]
  3. J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
    [Crossref]
  4. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
    [Crossref]
  5. S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
    [Crossref]
  6. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
    [Crossref]
  7. Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
    [Crossref]
  8. R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
    [Crossref]
  9. X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
    [Crossref]
  10. A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
    [Crossref]
  11. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.
  12. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
    [Crossref]
  13. X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
    [Crossref]
  14. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
    [Crossref]
  15. A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
    [Crossref]
  16. I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
    [Crossref]
  17. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  18. T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  20. S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
    [Crossref]
  21. L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
    [Crossref]
  22. C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
    [Crossref]
  23. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
    [Crossref]
  24. S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
    [Crossref]
  25. D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999).
    [Crossref]
  26. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
    [Crossref]
  27. E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
    [Crossref]
  28. A. E. Minovich, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
    [Crossref]
  29. Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
    [Crossref]
  30. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
    [Crossref]
  31. P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
    [Crossref]
  32. F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
    [Crossref]
  33. L. Lin and A. Roberts, “Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,” Opt. Express 19, 2626–2633 (2011).
    [Crossref]
  34. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  35. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
    [Crossref]
  36. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
    [Crossref]
  37. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
    [Crossref]
  38. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
    [Crossref]
  39. C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
    [Crossref]
  40. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref]
  41. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
    [Crossref]
  42. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
    [Crossref]
  43. E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
    [Crossref]
  44. Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
    [Crossref]
  45. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010).
    [Crossref]
  46. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
    [Crossref]
  47. R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
    [Crossref]
  48. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
    [Crossref]
  49. C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
    [Crossref]
  50. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
    [Crossref]
  51. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
    [Crossref]
  52. N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
    [Crossref]
  53. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
    [Crossref]
  54. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  55. J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
    [Crossref]
  56. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
    [Crossref]
  57. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
    [Crossref]
  58. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [Crossref]
  59. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
    [Crossref]
  60. C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
    [Crossref]
  61. H. Taguchi and M. Enokido, “Technology of color filter materials for image sensor,” in Proceedings of International Image Sensor Workshop (2011), pp. 8–11.
  62. R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
    [Crossref]
  63. C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging,” J. Opt. Soc. Am. A 33, 2312–2322, 2016.
    [Crossref]
  64. P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
    [Crossref]
  65. R. Hirsch, Exploring Colour Photography: a Complete Guide (Laurence King, 2004).
  66. R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018).
    [Crossref]

2019 (3)

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

2018 (12)

R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018).
[Crossref]

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

2017 (8)

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

2016 (7)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
[Crossref]

C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging,” J. Opt. Soc. Am. A 33, 2312–2322, 2016.
[Crossref]

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

2015 (6)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

A. E. Minovich, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
[Crossref]

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

2013 (3)

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

2012 (4)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

2011 (2)

2010 (3)

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010).
[Crossref]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

2009 (1)

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
[Crossref]

2008 (1)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref]

2007 (2)

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

2006 (2)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

2005 (2)

R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

1999 (1)

D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Accarino, C.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Aieta, F.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Almeida, E.

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref]

Al-Rawhani, M. A.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Altmann, Y.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Ameer-Beg, S. M.

Ankri, R.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Annese, V. F.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Antolovic, I. M.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Aoust, G.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Arce, G. R.

Arguello, H.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Balaur, E.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Barber, P.

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

Baronti, F.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref]

Belluso, M.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Bergman, D.

D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999).
[Crossref]

Blanchard, R.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Boltasseva, A.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Bonaccini Calia, D.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Bonanno, G.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Bozhevolnyi, S. I.

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Bruschini, C.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Buller, G. S.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Burri, S.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Buttar, C.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Butun, S.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Capasso, F.

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Charbon, E.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Chaudhuri, K.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Cheah, K. W.

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

Chen, J.-W.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Chen, K.-R.

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Chen, Q.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010).
[Crossref]

Chen, S.

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

Chen, T.-Y.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Chen, W. T.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Chou, W.-T.

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Choudhury, S. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Chu, C. H.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Clark, A. W.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
[Crossref]

Coelho, S.

Collins, S.

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Connolly, P. W. R.

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
[Crossref]

Correa, C. V.

Cova, S.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Cumming, D. R. S.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010).
[Crossref]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Deshpande, R. A.

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Devauges, V.

DeVault, C.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Ding, F.

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Drysdale, T. D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Duempelmann, L.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

Durini, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Dutton, N.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Enokido, M.

H. Taguchi and M. Enokido, “Technology of color filter materials for image sensor,” in Proceedings of International Image Sensor Workshop (2011), pp. 8–11.

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Flewitt, A. J.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

Gaburro, Z.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Gallinet, B.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
[Crossref]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref]

Genevet, P.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Gersbach, M.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Giagkoulovits, C.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

Goyal, V. K.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Grant, J.

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

Grant, J. P.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

Gyongy, I.

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Halimi, A.

Hao, D.

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

Harkins, R. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Hasan, R. M. M.

R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018).
[Crossref]

He, X.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Henderson, R. K.

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Heydari, E.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

Hirsch, R.

R. Hirsch, Exploring Colour Photography: a Complete Guide (Laurence King, 2004).

Hiskett, P. A.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Hoebe, R. A.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Hong, J.-S.

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Huang, D.-J.

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Huang, Y.-W.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

Kats, M. A.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Kenny, M.

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

Kildishev, A. V.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Kivshar, Y.

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Krstajic, N.

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Kuo, Y.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Lalanne, P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

Lamb, R. A.

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, D. D. U.

Li, D.-U.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Li, G.

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, J.-W.

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Li, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Liao, C. Y.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Lin, L.

Liu, H.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref]

Liu, H. T.

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Lukac, R.

R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[Crossref]

Luo, X.

R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Luu-Dinh, A.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Maccagnani, P.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Maccarone, A.

MacKinnon, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maneuski, D.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Martin, O. J. F.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Martinez-Ramirez, D.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

Maruyama, Y.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

McCarthy, A.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

McLaughlin, S.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514–5530 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

Melino, G.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Mellado, N.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Michalet, X.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Minovich, A.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Minovich, A. E.

A. E. Minovich, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Mitra, S.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Monypenny, J.

Morak, S.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nanfang, Y.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Neale, S. L.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

Neshev, D. N.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Ng, T.

Nichol, C. J.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Novotny, L.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Pawlikowska, A. M.

Pinton, N.

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

Plataniotis, K. N.

R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[Crossref]

Poland, S. P.

Prior, Y.

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Pusino, V.

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

Qiu, C.

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

Rarity, J. G.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Ren, X.

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26, 5541–5557 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

Rétif, C.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

Richardson, J.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Ridley, K. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Roberts, A.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

L. Lin and A. Roberts, “Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,” Opt. Express 19, 2626–2633 (2011).
[Crossref]

Roncella, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Rughoobur, G.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

Saletti, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Shah, Y. D.

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

Shahbazyan, T. V.

T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).

Shalaev, V. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Shalem, G.

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref]

Shapiro, J. H.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Shin, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Silber, A.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

Skafidas, E.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Smiet, C. B.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

Smith, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Sperling, J. R.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

Stockman, M. I.

T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).

Stoppa, D.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Strelniker, Y.

D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999).
[Crossref]

Suhling, K.

Sun, G.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Sun, M.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Sung, R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Tachella, J.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Taguchi, H.

H. Taguchi and M. Enokido, “Technology of color filter materials for image sensor,” in Proceedings of International Image Sensor Workshop (2011), pp. 8–11.

Tetienne, J.-P.

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Tobin, R.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

Tosi, A.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Tourneret, J.-Y.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

Tsai, D. P.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Tsai, W.-Y.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Tyndall, D.

Ulku, A. C.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Unnithan, R. R.

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

van Beijnum, F.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

van Exter, M. P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

Veerappan, C.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Walker, R.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

Walker, R. J.

Wallace, A.

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

Wallace, A. M.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Walls, K.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
[Crossref]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Wang, D.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Weiss, S.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Weyers, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Wilkinson, T. D.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

Williams, C.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wong, F. N. C.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Woodhouse, I. H.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

Wu, P. C.

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

Xu, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

Yan, C.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Yang, K.-Y.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
[Crossref]

Yang, X. Y.

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
[Crossref]

Yang, Y.

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref]

Zentgraf, T.

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, S.

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

ACS Nano (2)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10, 492–498 (2016).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

ACS Photon. (4)

C. Qiu, S. Zhang, F. Capasso, and Y. Kivshar, “Special issue on "ultra-capacity metasurfaces with low dimension and high efficiency",” ACS Photon. 5, 1640–1642 (2018).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenny, V. Pusino, and D. R. S. Cumming, “Ultra-narrow line width polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photon. 5, 663–669 (2018).
[Crossref]

N. Pinton, J. Grant, S. Collins, and D. R. S. Cumming, “Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light,” ACS Photon. 5, 1250–1261 (2018).
[Crossref]

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photon. 3, 190–196 (2016).
[Crossref]

Adv. Funct. Mater. (1)

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 2, 1701866 (2017).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55, 1004–1006 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 6801212 (2018).
[Crossref]

Y. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

IEEE Sens. J. (1)

C. Accarino, G. Melino, V. F. Annese, M. A. Al-Rawhani, Y. D. Shah, D. Maneuski, C. Giagkoulovits, J. P. Grant, S. Mitra, C. Buttar, and D. R. S. Cumming, “A 64 × 64 SPAD array for portable colorimetric sensing, fluorescence and x-ray imaging,” IEEE Sens. J. 19, 7319–7327 (2019).
[Crossref]

IEEE Trans. Consum. Electron. (1)

R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942–4954 (2014).
[Crossref]

J. Mod. Opt. (1)

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, “Photon counting arrays for astrophysics,” J. Mod. Opt. 54, 163–189 (2007).
[Crossref]

J. Opt. (1)

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt. 19, 094006 (2017).
[Crossref]

J. Opt. A (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (2)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[Crossref]

A. E. Minovich, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Light Sci. Appl. (1)

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Materials (1)

R. R. Unnithan, M. Sun, X. He, E. Balaur, A. Minovich, D. N. Neshev, E. Skafidas, and A. Roberts, “Plasmonic colour filters based on coaxial holes in aluminium,” Materials 10, 383 (2017).
[Crossref]

Nano Lett. (5)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” Nano Lett. 15, 10671–10680 (2015).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17, 445–452 (2017).
[Crossref]

Nanomanufacturing Metrol. (1)

R. M. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanufacturing Metrol. 1, 67–81 (2018).
[Crossref]

Nanophotonics (3)

F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, “Controlling the phase of optical nonlinearity with plasmonic metasurfaces,” Nanophotonics 7, 1013–1024 (2018).
[Crossref]

Nat. Commun. (4)

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10, 4984 (2019).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (2)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Nat. Phys. (1)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

Nature (3)

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Opt. Express (6)

Phys. Rev. B (2)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

D. Bergman and Y. Strelniker, “Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,” Phys. Rev. B 60, 13016–13027 (1999).
[Crossref]

Phys. Rev. Lett. (1)

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009).
[Crossref]

Plasmonics (2)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, “Light funneling profile during enhanced transmission through a subwavelength metallic slit,” Plasmonics 13, 2249–2254 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112 (2005).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Sci. Rep. (2)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref]

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7, 7745 (2017).
[Crossref]

Science (1)

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

Sensors (1)

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Other (5)

T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 × 128 single-photon image sensor with on-pixel 55  ps 10b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011), pp. 312–314.

H. Taguchi and M. Enokido, “Technology of color filter materials for image sensor,” in Proceedings of International Image Sensor Workshop (2011), pp. 8–11.

R. Hirsch, Exploring Colour Photography: a Complete Guide (Laurence King, 2004).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the proposed plasmonic metasurface design. (a) Schematic of the visible plasmonic metasurface designed on a borosilicate substrate. (b) The unit cell is highlighted with period $p$, long axis $a$, and short axis $b$ of the elliptical nanohole array. A ratio $\frac{b}{a}$ of 0.85 was used to maintain polarization insensitivity [44]. Circular nanoholes were created with control radii ${r_1}$ and ${r_2}$. (c) As shown in the schematic, unpolarized light (${E_{ix,y}}$) is normally incident in the ${k_z}$ direction. The nanoholes are over-etched into the substrate by 50 nm. The Al thickness, $d$, is 70 nm.
Fig. 2.
Fig. 2. Characterization of the fabricated visible metasurface filters. Scanning electron microscopy (SEM) images and micrographs (insets) of the fabricated metasurface design for (a) blue, (b) green, and (c) red color filters. Experimental and Lumerical FDTD transmission spectra of the (d) blue, (e) green, and (f) red plasmonic metasurfaces. The difference in transmission between design A and design B for red plasmonic metasurface is shown.
Fig. 3.
Fig. 3. (a) Mosaic plasmonic filter integrated with ${64} \times {64}$ SPAD array taken with macro lens CCD camera. (b) Composite reflection micrograph taken at $\times {5}$ magnification.
Fig. 4.
Fig. 4. $4\!f$ optical sytem used for filter transmission measurements and calibration. The variable aperture stop allowed varying-illumination $f$-numbers to be incident on the SPAD array.
Fig. 5.
Fig. 5. Transmission spectra for (a) blue, (b) green, and (c) red filter sets when illuminated at $f/{8}$ and $f/{2}$. (d) Entire spectrum shown at $f/{8}$.
Fig. 6.
Fig. 6. Uniformity of each of the three filter sets measured at (a) $\lambda = {500}\;{\rm nm}$, (b) $\lambda = {580}\;{\rm nm}$, and (c) $\lambda = {680}\;{\rm nm}$. (d) Normalized distribution of average counts in the bare chip at all three wavelengths. In each case the data are displayed as transmission histograms with the Gaussian trend fitted. The standard deviation $\sigma$ of the fit is provided for each case.
Fig. 7.
Fig. 7. Active imaging system in a bistatic configuration. The illumination is provided by a tunable laser source, diffusers (D1, D2), and an illumination lens. The receiving channel is composed of an objective lens ($f = {50}\;{\rm mm}$, $f/{1.8}$) and the SPAD array.
Fig. 8.
Fig. 8. Targets used for imaging with multispectral laser illumination. Dashed lines on (a) and (b) represent approximate camera fields of view of ${3}\;{\rm cm} \times {3}\;{\rm cm}$.
Fig. 9.
Fig. 9. Raw intensity images from the SPAD imager for multispectral laser illumination. Intensity values are shown as detected photons per pixel.
Fig. 10.
Fig. 10. Active imaging color reconstructions of each target for multispectral laser illumination. The target field was ${3}\;{\rm cm} \times {3}\;{\rm cm}$.
Fig. 11.
Fig. 11. Color image reconstruction of the toy figure when the exposure duration is progressively reduced using multispectral laser illumination.
Fig. 12.
Fig. 12. Passive imaging color reconstruction of each target.

Tables (1)

Tables Icon

Table 1. Filter Design Specifications

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ S P P = p 4 3 ( i 2 + i j + j 2 ) ε m ε d ε m + ε d ,
I ( n ) = B ( n ) + t = 1 t = 3 A i ( n ) l t ( n ) ,

Metrics