Abstract

Strain engineering is a natural route to control the electronic and optical properties of two-dimensional (2D) materials. Recently, 2D semiconductors have also been demonstrated as an intriguing host of strain-induced quantum-confined emitters with unique valley properties inherited from the host semiconductor. Here, we study the continuous and reversible tuning of the light emitted by such localized emitters in a monolayer tungsten diselenide embedded in a van der Waals heterostructure. Biaxial strain is applied on the emitters via strain transfer from a lead magnesium niobate–lead titanate (PMN-PT) piezoelectric substrate. Efficient modulation of the emission energy of several localized emitters up to 10 meV has been demonstrated on application of a voltage on the piezoelectric substrate. Further, we also find that the emission axis rotates by $ \sim {40^ \circ } $ as the magnitude of the biaxial strain is varied on these emitters. These results elevate the prospect of using all electrically controlled devices where the property of the localized emitters in a 2D host can be engineered with elastic fields for an integrated opto-electronics and nano-photonics platform.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

The novel opto-electronic properties of two-dimensional (2D) semiconductors has resulted in these materials being pursued for applications in nano-photonics [1]. Their large direct bandgap in the monolayer limit [2], valley-contrasting properties due to broken inversion symmetry in presence of time-reversal symmetry [3], and large exciton binding energy have exhibited a number of highly sophisticated and advanced photonic devices [47]. In addition, one of the most unique mechanical properties of 2D materials, over conventional bulk semiconductors, is their high stretchability of more than 10% before fracture [8]. Consequently, strain has been a very popular tuning parameter in the 2D materials research community as it offers a natural way to tune the semiconductor’s bandgap [9,10].

In parallel, single photon emitters (SPEs) with narrow linewidth and long lifetime have also been observed in 2D materials [1117]. In 2D semiconductors, it has been shown that three-dimensional quantum confinement in the monolayers can originate from defects or localized strain-induced potentials in the lattice [1821]. These local strain gradients can be introduced naturally at random locations as a nano-bubble or a wrinkle in the flake during the exfoliation and transfer process [22] or can be engineered via nano-structure fabrication at predetermined locations of the monolayer [19,20]. The local strain confines a single exciton in all three dimensions, which, on recombination emits a single photon, resembling artificial atoms or quantum dots. This discovery has further kindled the prospect of 2D materials in the field of quantum optics. Quantum light is an essential component in quantum information processing [23], quantum sensing [24], and optoelectronics [25]. The desire to utilize the quantum emitters in 2D materials quickly took precedence due to the ease of integration of monolayers with existing optoelectronics and nano-photonic circuit components [4,5,7,26,27]. This demonstration has been also extended to the localized emitters in 2D materials [28,29]. In addition, emitters in transition metal dichalcogenides (TMDC), like tungsten diselnide ($ {{\rm WSe}_2} $), also offer the possibility of accessing optically controlled spin-valley qubit [30,31].

Integration of quantum emitters into photonic devices requires active control of their emission properties. Various approaches like external electric field and magnetic field have been used previously to manipulate the exciton properties in the localized emitters in 2D TMDCs [11,12]. The quantum-confined Stark effect has been demonstrated to show a voltage tunable emission frequency [32] including the modulation of the electron–hole exchange interaction of the localized [33] and delocalized excitons [34] in $ {{\rm WSe}_2} $. However, the onset of various nonradiative processes like tunneling along with decreasing overlap of the electron–hole wave function of the localized exciton with electric field leads to quenching of the emission intensity and linewidth broadening, thus limiting the device performance. Although a high spectral tunability was reported [32], a complete reduction in the fine-structure splitting (FSS) was not confirmed due to the increasing linewidth of the emitters [33]. A complete reduction in the FSS can be brought about by a change in the symmetry along with the reduction of the electron–hole exchange interaction. This is predicted to work efficiently by involving two tuning knobs where strain can align the principle axis of the emitter along the electric field for efficient tunability [35]. Such rotation of the emission axis can also be utilized to enhance the coupling efficiency of a waveguide integrated with the emitter. So far, the effects of dynamic biaxial strain on the emission axis remain unexplored in the quantum emitters in 2D semiconductors. We demonstrate a rotation of the emission axis by $ \sim {{40}^\circ} $ of the quantum emitters as well as a maximum energy shift of 10 meV shift.

Strain has been a very popular tuning parameter to achieve tunable electronic and optical properties in 2D materials as well as in conventional solid-state quantum emitters [36]. Biaxial strain has demonstrated a much higher tunability in the bandgap of TMDC than uniaxial strain [9]. A biaxial strain tuning of 300 meV/% (on trilayer) and 105 meV/% (on monolayer) has been demonstrated in 2D semiconductors by employing a piezoelectric actuator [37] and exploiting thermal mismatch with the substrate [38]. The latter approach is not very efficient for the studying the strain tunability of the emitters in a TMDC, as it involves substrate heating, which would lead to quenching of the localized emitters because of their low thermal activation energy [12]. External uniaxial strain has been applied with bendable substrate in defects in insulating hexagonal boron nitride flakes [39]. However, this technique cannot be easily extended to quantum emitters in TMDCs at low temperature as these devices require complex mechanical components that are not compatible with cryogenic environment. In this letter, we will demonstrate the effect of active biaxial strain tuning at 4K on localized emitters in tungsten diselenide embedded in a van der Waals heterostructure via a piezoelectric actuator.

2. DEVICE PROPERTIES

The studied device in this experiment is a van der Waals heterostructure [Fig. 1(a)] assembled on a commercially available piezoelectric substrate (0.5 mm thick lead magnesium niobate-lead titanate PMN-PT 001 substrate from MTI wafers). The substrate is contacted with 50 nm e-beam evaporated titanium/gold film on the bottom and a lithographically patterned electrode on the top so that a finite voltage can be applied to obtain a mechanical deformation in the piezoelectric material. A few-layer graphene (FLG) flake is transferred onto the prepatterned electrode using a previously described all-dry transfer technique [40]. This layer is used as the top electrode for the piezoelectric actuator. Next, few-layer hexagonal boron nitride (h-BN) is transferred on top of the graphene layer followed by a monolayer $ {{\rm WSe}_2} $ flake, which is finally encapsulated in a capping h-BN. Naturally occurring nano-bubbles and wrinkles during the transfer and exfoliation process lead to a localized strain gradient that hosts spatially confined excitons and emits single photons [11,12,15]. The h-BN layer acts as a dielectric spacer to prevent photoluminescence (PL) quenching of the emitters due to the proximity of the graphene layer [41]. Furthermore, h-BN encapsulation has also been shown to improve the optical properties of TMDC excitons as compared to un-encapsulated flakes [42]. Strain transfer is expected from the substrate to the $ {{\rm WSe}_2} $ flake due to strong van der Waals interaction of 2D materials with the substrate and with each individual layers [37]. Further, the Young’s modulus of the piezoelectric material is an order of magnitude higher than most flexible substrates that has been used previously to study the effect of active strain on 2D materials. A strain transfer of more than 90% is predicted when the Young’s modulus of the deforming substrate matches closely with the elastic constant of the 2D material [43].

An applied voltage across the top and bottom electrode of the piezoelectric substrate leads to in-plane ($ x- y $) and out-of-plane ($ z $) mechanical deformation. In our device, the van der Waal’s heterostructure is transferred on the $ x - y $ surface. In case of 001 oriented PMN-PT substrate, the in-plane strain in the $ x $- and $ y $- direction should be roughly similar due to the equal piezoelectric coefficients in the two directions. We perform finite element analysis using the COMSOL multiphysics package to calculate the biaxial strain induced on top of the graphene flake approximately near the location of the studied localized emitters [Fig. 1(b)]. The geometry of the simulated device is presented in Fig. S1 of Supplement 1. The strain is linear within the applied voltage range [Fig. 1(b)]. We also find a slight anisotropy in the strain profile along the $ x $ and $ y $ direction. Our calculations have predicted that the imparted strain is dependent on the geometry and the location on the graphene electrode (Fig. S2 of Supplement 1). However, the actual strain transferred from the graphene to the emitter will depend on the exact location of the emitter along the wrinkle, which cannot be resolved in our setup. Further details on the calculations are provided in Section 1 of Supplement 1.

 

Fig. 1. (a) Schematic of the van der Waals heterostructure consisting of few layer graphene (FLG), hexagonal boron nitride (h-BN), and a monolayer $ {{\rm WSe}_2} $ flake on the piezoelectric substrate. The graphene layer is connected to metal electrodes. (b) Biaxial strain profile obtained from finite element simulation using COMSOL. $ { \epsilon _x} $ and $ { \epsilon _y} $ are the values of the strain induced in the $ x $ and $ y $ direction, respectively.

Download Full Size | PPT Slide | PDF

3. PHOTOLUMINESCENCE

The optical properties of the localized emitters are measured at 4K in an Attodry 1000 cryostat using a home-built confocal microscope setup. We use an excitation laser at 660 nm wavelength with an optical power of $ \sim 100\;{\rm nW} $ focused with an objective of 0.82 N.A. The collected signal is fiber coupled to an imaging spectrometer. The PL spectra of the localized emitters at zero applied voltage is presented in Fig. 2(a). The spectra shows two pairs of split peaks. This is a characteristic feature of quantum emitters hosted in a TMDC and is associated with a fine structure due to the anisotropic electron–hole exchange interaction in the presence of an asymmetric confinement potential [11,12]. Next, we record PL time trace [Fig. 2(b)], which exhibits correlated spectral wandering of the two split peaks from the two emitters present within the focal spot of the laser. This further confirms that both peaks of the doublet are from a single localized emitter.

 

Fig. 2. (a) PL spectra from a region of the sample showing emission lines from two localized emitters labelled E1 and E2; (b) PL time trace of the emitters in (a).

Download Full Size | PPT Slide | PDF

4. STRAIN-DEPENDENT EMISSION PROPERTIES

We apply a DC voltage between the FLG and the bottom gate of the piezoelectric substrate using a Keithley 2400 source-meter. The voltage causes a deformation in the substrate due to the piezoelectric effect and induces a strain on the heterostructure. Figure 3(a) presents the PL spectra from a localized emitter at two different applied piezoelectric voltages. An unambiguous shift in the emission energy as a function of strain due to the applied voltage is observed. Intensity autocorrelation measurements were performed using a Hanbury Brown and Twiss setup, which resulted in an antibunching behavior of the emitted light. This confirms that the doublets observed in our device with a correlated spectral wandering emit single photons as also observed in previous reports [1115]. We do not observe any measurable change in the photon statistics and relaxation lifetime as a function of strain. For both the voltages, we extracted a $ {g^{(2)}}(\tau = 0) $ value of 0.3 and a lifetime of $ 5.5\;{\rm ns} \pm 0.2\;{\rm ns} $.

 

Fig. 3. (a) PL spectra of a quantum emitter (E3) taken at two different voltages (${\rm V}1 = 0\,\,{\rm V},{\rm V}2 = 20\,\,{\rm V}$); (b) second-order intensity autocorrelation function at voltages demonstrating antibunching behavior; (c) PL spectra of the localized emitter (E1 and E2) as a function of applied piezoelectric voltage ($ {{\rm V}_P} $) in a triangular waveform; (d) linear modulation of the emission energy of the two doublets from 0 to 210 V (bottom panel). The voltage is fixed at 210 V, and a time trace is recorded for the upper panel in (b); (e) spectral line-cuts taken from the image plot in (a) at different $ {{\rm V}_P} $; (f) PL spectra from 0 to maximum applied voltage on the device prior to slippage of the flake.

Download Full Size | PPT Slide | PDF

Figure 3(c) presents a PL color map as a function of the piezoelectric voltage for two doublets. We get a maximum energy shift of 1.3 meV on these localized emitters, which can be reversibly applied without significant hysteresis. Further, the spectral line-cuts in Fig. 3(e) show no significant broadening or quenching of the emission, which is usually observed for the case of electric field tuning of these localized emitters via the quantum-confined Stark effect. To demonstrate the stability at the maximum applied voltage by the Keithley source-meter, we ramp the voltage to the maximum voltage value (210 V or $ 420\;{\rm V}/\unicode{x00B5}{\rm m} $) and then record the time trace. The weak redshift in energy as a function of time presented in Fig. 3(d) could be due to slight slippage at higher voltage. Since we were limited in voltage by the Keithley source-meter, we switched to another voltage source to apply higher values of the piezoelectric field and test the maximum tunability of this device. A maximum shift of 10 meV was observed [Fig. 3(f)] for the same emitters. However, we did observe large slippage of the flake at higher strain value and therefore restricted the rest of the characterization to the linear regime.

Next, we study the nature of these doublet emission lines as a function of strain via polarization resolved optical spectroscopy. Figures 4(a) and 4(b) are the polar plots of the intensity of the higher and lower energy peaks of a doublet measured at three different applied voltages on the piezoelectric substrate ($-50\,\,{\rm V}$, 0 V, and 100 V). The angle label corresponds to the angle of the linear polarizer at the collection port. The relative orientation between the higher and lower energy peak of the localized exciton is $ \sim {30^ \circ } $. The nonorthogonal polarization direction between the two split peaks of these localized excitons has also been reported earlier [44]. From the polar plot, we find that there is a correlated rotation in the emission direction of both the peaks of the doublet as a function of voltage [Figs. 4(a)4(c)]. In our device, the direction of the strain field is fixed. When the emission dipole is not aligned to the direction of the applied strain field, the emitter would try to align itself along the direction of the applied strain. This behavior with strain has been also observed in single self-assembled quantum dots [45]. The degree of rotation would depend on both the alignment of the emitter with the direction of strain and magnitude of the applied strain. From Figs. 4(a) and 4(b), we do not find any pronounced change in the difference of the angle between the two peaks of the doublet ($ \phi $). Further, there is not much change (within the resolution of the spectrometer) in the FSS as a function of applied voltage [Fig. 5(b)], which means the symmetry of the confinement potential of the emitter is not being affected significantly with the strain. In the case of quantum emitters with low structural symmetry, exciton degeneracy can only be altered significantly by the application of two perturbation fields. Electric field combined with strain [35] has been used earlier to reduce the degeneracy of confined excitons.

Figure 5(a) presents the relative change in the angle of the higher energy peak of the doublet as a function of the applied voltage on the piezoelectric substrate. The change in emission direction of both the peaks of the doublet are correlated, and the corresponding values of the angle are presented in Fig. S5. The simultaneous values of the FSS as a function of the applied voltage are presented in Fig. 5(b). We use the expression from diagonalization of the two-level Hamiltonian of the bright exciton used for quantum dots [35] under influence of a strain field, from which the FSS and angle can be calculated at the applied strain $ \epsilon $,

$$ \tan{\theta _ \pm } = \frac{{k + \gamma \epsilon }}{{\eta + \alpha \epsilon \pm {\rm FSS}}}.$$
$${\rm FSS} = [{(\eta + \alpha \epsilon )^2} + {(k + \gamma \epsilon )^2}{]^{\frac{1}{2}}}.$$
Here, $ \theta $ is the relative orientation of the emitter, and $ \eta $ and $k$ are related to the structure parameters of the emitter. $ \alpha $ and $ \gamma $ are related to the elastic constant.
 

Fig. 4. Polar plot of the PL intensity of the (a) higher and (b) the lower energy peak of a doublet presented at three different applied voltages on the piezoelectric substrate (red markers represent the data and solid black lines are sinusoidal fits). (c) Arrows illustrating the relative direction of the emission polarization of the two peaks of the doublet as a function of voltage. Dotted (solid) line represents the lower (higher) energy peak of the doublet.

Download Full Size | PPT Slide | PDF

 

Fig. 5. (a) Relative emission angle of the lower energy peak of the doublet and (b) the FSS as a function of applied voltage. Unfilled markers are data points, and the solid line is calculated from a model quantum emitter using Eqs. (1) and (2).

Download Full Size | PPT Slide | PDF

From the model quantum emitter, we see that for the calculated change in angle as a function of a strain field [presented as solid black line in Fig. 5(a)], there is a parabolic change in the FSS [solid black line in Fig. 5(b)]. The trend of the orientation angle as a function of the voltage on the piezoelectric substrate matches closely with the model quantum emitter. However, no clear trend was observed in the measured FSS of the emitter [Fig. 5(b)]. The error bar on each individual data point in Fig. 5(b) represents the distribution of the FSS value at that voltage obtained from fitting Lorentzian line shapes to the two peaks of the doublet. Future devices would benefit from a higher anisotropy in the biaxial strain field to reshape the electronic structure of the observed emitter to observe a more pronounced change in the FSS. Previously, it was shown that in situ application of a large anisotropic strain along with an external electric field can alter the energy level degeneracy of the exciton [35]. As we only apply an individual strain field, we do not cross the critical point where the FSS would show a significantly higher change and become close to zero or demonstrate a more pronounced anticrossing behavior. Also, the alignment of the strain with respect to the deformation axis of the quantum emitter also influences the change in the FSS [45]. However, due to the fixed direction of the applied strain, we do observe a rotation in the emission axis as a function of voltage as emitters tend to align themselves along the strain field. This feature can be used in the future in combination with another perturbation field, where strain can be used to align the emitter axis with the second field for improved functionality.

5. CONCLUSION

In conclusion, we have demonstrated reversible control of the emission energy of localized emitters in $ {{\rm WSe}_2} $ in a strain-tunable van der Waals heterostructure transferred on a piezoelectric substrate. No significant broadening of the linewidth or quenching of the emission intensity was observed as a function of the change of the emission energy with strain. Further, we have also demonstrated a rotation of the emission axis of $ \sim {40^ \circ } $ with the applied strain. Such devices can achieve efficient light coupling to guided modes of a waveguide as the axis of the localized emitter can be reoriented. This can be also extended to other piezoelectric material like lithium niobate, which is an attractive material for fabricating optical components (like waveguides) for photonic-based telecommunication. Recently, coupling of $ {{\rm WSe}_2} $ emitters to a lithium niobate waveguide has been demonstrated [46]. The coupling efficiency of this device can be enhanced significantly by designing a strain-tunable device with lithium niobate to align the quantum emitters along the waveguide axis. Also, the emission energy of the emitter can be tuned into resonance with an optical microcavity or a resonant laser using strain. In the future, micromachined actuators presenting different device designs can be utilized to deliver arbitrary strain fields with relatively high magnitudes at user-defined directions [47] to study the evolution of the selection rules and excitonic fine structure in the localized emitters in 2D materials.

Note: During the review of this manuscript, we became aware of two additional works on strain tuning of quantum emitters in $ {{\rm WSe}_2} $ quantum emitters [48,49].

Funding

Directorate for Mathematical and Physical Sciences (CAREER-DMR-1553788, EFRI-EFMA-154270); Air Force Office of Scientific Research (FA9550-19-1-0074); Army Research Office (W911NF-18-1-0431); National Science Foundation (CHE-1839155).

Disclosures

The authors declare that there are no conflicts of interest related to this paper.

 

See Supplement 1 for supporting content.

REFERENCES

1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012). [CrossRef]  

2. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010). [CrossRef]  

3. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016). [CrossRef]  

4. K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014). [CrossRef]  

5. K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015). [CrossRef]  

6. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016). [CrossRef]  

7. S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018). [CrossRef]  

8. D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014). [CrossRef]  

9. R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015). [CrossRef]  

10. S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015). [CrossRef]  

11. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015). [CrossRef]  

12. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015). [CrossRef]  

13. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015). [CrossRef]  

14. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015). [CrossRef]  

15. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015). [CrossRef]  

16. C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016). [CrossRef]  

17. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016). [CrossRef]  

18. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015). [CrossRef]  

19. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017). [CrossRef]  

20. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017). [CrossRef]  

21. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016). [CrossRef]  

22. G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017). [CrossRef]  

23. A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]  

24. A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011). [CrossRef]  

25. A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010). [CrossRef]  

26. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015). [CrossRef]  

27. C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014). [CrossRef]  

28. T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017). [CrossRef]  

29. Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018). [CrossRef]  

30. C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018). [CrossRef]  

31. X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019). [CrossRef]  

32. C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017). [CrossRef]  

33. C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019). [CrossRef]  

34. C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019). [CrossRef]  

35. R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012). [CrossRef]  

36. J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018). [CrossRef]  

37. Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013). [CrossRef]  

38. G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015). [CrossRef]  

39. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017). [CrossRef]  

40. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014). [CrossRef]  

41. K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016). [CrossRef]  

42. F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017). [CrossRef]  

43. R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017). [CrossRef]  

44. S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014). [CrossRef]  

45. J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011). [CrossRef]  

46. D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips [invited],” Opt. Mater. Express 9, 441–448 (2019). [CrossRef]  

47. J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016). [CrossRef]  

48. O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019). [CrossRef]  

49. H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  2. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  3. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
    [Crossref]
  4. K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
    [Crossref]
  5. K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
    [Crossref]
  6. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
    [Crossref]
  7. S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
    [Crossref]
  8. D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
    [Crossref]
  9. R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
    [Crossref]
  10. S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
    [Crossref]
  11. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref]
  12. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
    [Crossref]
  13. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
    [Crossref]
  14. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref]
  15. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
    [Crossref]
  16. C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
    [Crossref]
  17. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
    [Crossref]
  18. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
    [Crossref]
  19. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
    [Crossref]
  20. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
    [Crossref]
  21. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
    [Crossref]
  22. G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
    [Crossref]
  23. A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [Crossref]
  24. A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
    [Crossref]
  25. A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010).
    [Crossref]
  26. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref]
  27. C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
    [Crossref]
  28. T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
    [Crossref]
  29. Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
    [Crossref]
  30. C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
    [Crossref]
  31. X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
    [Crossref]
  32. C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
    [Crossref]
  33. C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
    [Crossref]
  34. C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
    [Crossref]
  35. R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
    [Crossref]
  36. J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
    [Crossref]
  37. Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
    [Crossref]
  38. G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
    [Crossref]
  39. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
    [Crossref]
  40. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
    [Crossref]
  41. K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
    [Crossref]
  42. F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
    [Crossref]
  43. R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
    [Crossref]
  44. S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
    [Crossref]
  45. J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
    [Crossref]
  46. D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips [invited],” Opt. Mater. Express 9, 441–448 (2019).
    [Crossref]
  47. J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
    [Crossref]
  48. O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
    [Crossref]
  49. H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
    [Crossref]

2019 (6)

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
[Crossref]

D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips [invited],” Opt. Mater. Express 9, 441–448 (2019).
[Crossref]

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

2018 (4)

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

2017 (8)

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

2016 (7)

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

2015 (11)

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

2014 (5)

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

2013 (1)

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

2012 (2)

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (2)

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

2010 (2)

A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

1999 (1)

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Aberl, J.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Aghaeimeibodi, S.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Aharonovich, I.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Ajayi, O. A.

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

Akinwande, D.

D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
[Crossref]

Ali, S.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Allain, A.

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Alonso-Gonzalez, P.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Amand, T.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Ardelean, J. V.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Atatüre, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010).
[Crossref]

Atkinson, P.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

Awschalom, D. D.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Badolato, A.

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

Barbone, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Barmak, K.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Bhattacharjee, S.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Boes, A.

Bonato, C.

Branny, A.

Bratschitsch, R.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

Bray, K.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Brotons-Gisbert, M.

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Burkard, G.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Buscema, M.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Cadiz, F.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Cai, H.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Cai, T.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Cappelluti, E.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

Carrere, H.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Castellanos-Gomez, A.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Chakraborty, C.

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Chan, N. Y.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Chapman, R. J.

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Chen, X.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Cheng, S. J.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Clark, G.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Courtade, E.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

de Vasconcellos, S. M.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Dhara, S.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

Ding, F.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

DiVincenzo, D. P.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Dörr, K.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Driscoll, K.

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

Drüppel, M.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

Dubey, S.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Dutta, S.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Edlinger, J.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Efetov, D. K.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Englund, D.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Fält, S.

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Ferrari, A. C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Ford, M. J.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Fourkas, J. T.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Frigeri, P.

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Frisenda, R.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

Fuchs, G. D.

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

Furchi, M. M.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Gerardot, B. D.

D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips [invited],” Opt. Mater. Express 9, 441–448 (2019).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

Ghadimi, A.

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Goodfellow, K. M.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Grosso, G.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Guinea, F.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

Guo, W.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Hafenbrak, R.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Hao, J.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Heine, T.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Herklotz, A.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Hofling, S.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Hone, J.

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hone, J. C.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Hsu, Y.-T.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Huang, H.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Hui, Y. Y.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Iff, O.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Janssen, L.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Jarillo-Herrero, P.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Jie, W.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Jöns, K. D.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Jungwirth, N. R.

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

Kaczmarczyk, A.

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kara, D. M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Kern, J.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

Kim, B.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Kim, H.

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Kim, J. H.

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Klenovský, P.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Konthasinghe, K.

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Korn, T.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Krápek, V.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Krauss, T.

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

Kuc, A.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

Kuhn, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Kumar, S.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

Lagarde, D.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Latawiec, P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Lau, S. P.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lee, J.

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Lettner, T.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Li, L.-J.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Li, W.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Li, X.

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

Liao, Y. H.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

Lienhard, B.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Lin, P. Y.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

Liu, X.

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Loncar, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Loss, D.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Lu, X.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Luo, Y.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Manca, M.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Manzeli, S.

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Marie, X.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Mariscal, A.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Martin-Sanchez, J.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Martín-Sánchez, J.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Meunier, V.

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

Michaelis de Vasconcellos, S.

Michler, P.

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Moczala-Dusanowska, M.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Molenaar, R.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Montblanch, A. R.-P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Moon, H.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Moon, J. S.

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Mukherjee, A.

C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

Nah, S.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Niehues, I.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Noh, G.

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Novotny, L.

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

O’Loughlin, T. A.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Ortix, C.

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

Ott, A. K.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Palacios-Berraquero, C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Perez de Lara, D.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

Peruzzo, A.

Petrone, N.

D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
[Crossref]

Picard, R.

Piredda, G.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Plechinger, G.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

Plumhof, J. D.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Proux, R.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

Qiu, L.

C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Rastelli, A.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Reindl, M.

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Reiter, D. E.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Renucci, P.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Rhodes, D. A.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

Rivera, P.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Robert, C.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Rohlfing, M.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

Roldán, R.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

Ross, J. S.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Savaresi, M.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Schaibley, J. R.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Schimpf, C.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Schmidt, O. G.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Schmidt, R.

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

Schneider, C.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Schneider, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

Schüller, C.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

Seravalli, L.

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Serna, R.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Seyler, K. L.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shen, Y.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Shepard, G. D.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

Sherwin, M.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Singh, V.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Small, A.

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Sowers, K.

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

Srivastava, A.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Stangl, J.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Steele, G. A.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Stiehm, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Strauf, S.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

Stroj, S.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Taboada-Gutierrez, J.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Taniguchi, T.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Taylor, J. M.

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

Tedeschi, D.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Tongay, S.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Tonndorf, P.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

Toth, M.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Tran, T. T.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Trevisi, G.

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Trotta, R.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

Urbaszek, B.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [invited],” Opt. Mater. Express 9, 1479–1487 (2019).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

K. M. Goodfellow, R. Beams, C. Chakraborty, and L. Novotny, and A. N. Vamivakas, “Integrated nanophotonics based on nanowire plasmons and atomically thin material,” Optica 1, 149–152 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010).
[Crossref]

Vamivakas, N.

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

van den Brink, J.

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

van der Zant, H. S. J.

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Veuillen, J.-Y.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Waduge, P.

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

Waks, E.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Wang, G.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, X.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Wanunu, M.

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

Watanabe, K.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

White, D.

Wicks, G. W.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Wigger, D.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Wildmann, J.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Wildmann, J. S.

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Xiong, Q.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Xu, X.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yang, Z.

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

Yao, Q.

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Yao, W.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yoon, D.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Yoshimura, A.

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

Yu, H.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Yuan, X.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Yumigeta, K.

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

Zallo, E.

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Zhao, Y.

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

Zhu, X.-Y.

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

Ziss, D.

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

2D Mater. (3)

G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, “Nanobubble induced formation of quantum emitters in monolayer semiconductors,” 2D Mater. 4, 021019 (2017).
[Crossref]

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, “Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate,” 2D Mater. 2, 015006 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

ACS Nano (1)

Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, “Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126–7131 (2013).
[Crossref]

Adv. Mater. (1)

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. M. de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Adv. Opt. Mater. (1)

J. Martín-Sánchez, R. Trotta, G. Piredda, C. Schimpf, G. Trevisi, L. Seravalli, P. Frigeri, S. Stroj, T. Lettner, M. Reindl, J. S. Wildmann, J. Edlinger, and A. Rastelli, “Reversible control of in-plane elastic stress tensor in nanomembranes,” Adv. Opt. Mater. 4, 682–687 (2016).
[Crossref]

Appl. Phys. Lett. (2)

K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor,” Appl. Phys. Lett. 108, 021101 (2016).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Contemp. Phys. (1)

A. N. Vamivakas and M. Atatüre, “Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots,” Contemp. Phys. 51, 17–36 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter 27, 313201 (2015).
[Crossref]

Nano Lett. (8)

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

K. M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, and A. N. Vamivakas, “Direct on-chip optical plasmon detection with an atomically thin semiconductor,” Nano Lett. 15, 5477–5481 (2015).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J. T. Fourkas, and E. Waks, “Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons,” Nano Lett. 17, 6564–6568 (2017).
[Crossref]

C. Chakraborty, L. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, “3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure,” Nano Lett. 18, 2859–2863 (2018).
[Crossref]

C. Chakraborty, K. M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier, and N. Vamivakas, “Quantum-confined Stark effect of individual defects in a van der Waals heterostructure,” Nano Lett. 17, 2253–2258 (2017).
[Crossref]

O. Iff, D. Tedeschi, J. Martin-Sanchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutierrez, M. Savaresi, A. Rastelli, P. Alonso-Gonzalez, S. Hofling, R. Trotta, and C. Schneider, “Strain-tunable single photon sources in WSe2 monolayers,” Nano Lett. 19, 6931–6936 (2019).
[Crossref]

H. Kim, J. S. Moon, G. Noh, J. Lee, and J. H. Kim, “Position and frequency control of strain-induced quantum emitters in WSe2 monolayers,” Nano Lett. 19, 7534–7539 (2019).
[Crossref]

Nat. Commun. (4)

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
[Crossref]

Nat. Nanotech. (2)

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotech. 10, 507–511 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Nat. Nanotechnol. (6)

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li, X. Wang, Q. Xiong, and A. Srivastava, “Optical initialization of a single spin-valley in charged WSe2 quantum dots,” Nat. Nanotechnol. 14, 426–431 (2019).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137–1142 (2018).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Nat. Photonics (1)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

Nat. Phys. (1)

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Nat. Rev. Mater. (1)

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1, 16055 (2016).
[Crossref]

Nature (1)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

npj 2D Mater. Appl. (1)

R. Frisenda, M. Drüppel, R. Schmidt, S. M. de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, “Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides,” npj 2D Mater. Appl. 1, 10 (2017).
[Crossref]

Opt. Mater. Express (3)

Optica (2)

Phys. Rev. B (3)

C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308 (2019).
[Crossref]

S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, and O. G. Schmidt, “Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots,” Phys. Rev. B 89, 115309 (2014).
[Crossref]

J. D. Plumhof, V. Křápek, F. Ding, K. D. Jöns, R. Hafenbrak, P. Klenovský, A. Herklotz, K. Dörr, P. Michler, A. Rastelli, and O. G. Schmidt, “Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InGa1-xAs/GaAs quantum dots,” Phys. Rev. B 83, 121302 (2011).
[Crossref]

Phys. Rev. Lett. (4)

R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry,” Phys. Rev. Lett. 109, 147401 (2012).
[Crossref]

A. İmamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor, and M. Atatüre, “Nanoscale optical electrometer,” Phys. Rev. Lett. 107, 166802 (2011).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Phys. Rev. X (1)

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures,” Phys. Rev. X 7, 021026 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

J. Martín-Sánchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, “Strain-tuning of theoptical properties of semiconductor nanomaterials by integration onto piezoelectric actuators,” Semicond. Sci. Technol. 33, 013001 (2018).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the van der Waals heterostructure consisting of few layer graphene (FLG), hexagonal boron nitride (h-BN), and a monolayer $ {{\rm WSe}_2} $ flake on the piezoelectric substrate. The graphene layer is connected to metal electrodes. (b) Biaxial strain profile obtained from finite element simulation using COMSOL. $ { \epsilon _x} $ and $ { \epsilon _y} $ are the values of the strain induced in the $ x $ and $ y $ direction, respectively.
Fig. 2.
Fig. 2. (a) PL spectra from a region of the sample showing emission lines from two localized emitters labelled E1 and E2; (b) PL time trace of the emitters in (a).
Fig. 3.
Fig. 3. (a) PL spectra of a quantum emitter (E3) taken at two different voltages (${\rm V}1 = 0\,\,{\rm V},{\rm V}2 = 20\,\,{\rm V}$); (b) second-order intensity autocorrelation function at voltages demonstrating antibunching behavior; (c) PL spectra of the localized emitter (E1 and E2) as a function of applied piezoelectric voltage ($ {{\rm V}_P} $) in a triangular waveform; (d) linear modulation of the emission energy of the two doublets from 0 to 210 V (bottom panel). The voltage is fixed at 210 V, and a time trace is recorded for the upper panel in (b); (e) spectral line-cuts taken from the image plot in (a) at different $ {{\rm V}_P} $; (f) PL spectra from 0 to maximum applied voltage on the device prior to slippage of the flake.
Fig. 4.
Fig. 4. Polar plot of the PL intensity of the (a) higher and (b) the lower energy peak of a doublet presented at three different applied voltages on the piezoelectric substrate (red markers represent the data and solid black lines are sinusoidal fits). (c) Arrows illustrating the relative direction of the emission polarization of the two peaks of the doublet as a function of voltage. Dotted (solid) line represents the lower (higher) energy peak of the doublet.
Fig. 5.
Fig. 5. (a) Relative emission angle of the lower energy peak of the doublet and (b) the FSS as a function of applied voltage. Unfilled markers are data points, and the solid line is calculated from a model quantum emitter using Eqs. (1) and (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan θ ± = k + γ ϵ η + α ϵ ± F S S .
F S S = [ ( η + α ϵ ) 2 + ( k + γ ϵ ) 2 ] 1 2 .

Metrics