Abstract

Reversible entanglement transfer between light and matter is a crucial requisite for the ongoing developments of quantum information technologies. Quantum networks and their envisioned applications, e.g., secure communications beyond direct transmission, distributed quantum computing, or enhanced sensing, rely on entanglement distribution between nodes. Although entanglement transfer has been demonstrated, a current roadblock is the limited efficiency of this process that can compromise the scalability of multi-step architectures. Here we demonstrate the efficient transfer of heralded single-photon entanglement into and out of two quantum memories based on large ensembles of cold cesium atoms. We achieve an overall storage-and-retrieval efficiency of 85% together with a preserved suppression of the two-photon component of about 10% of the value for a coherent state. Our work constitutes an important capability that is needed toward large scale networks and increased functionality.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Quantum networks rely on the transfer of quantum states of light and their mapping into stationary quantum nodes [1,2]. Central to this endeavor is the distribution of entanglement between the material nodes, which opens a variety of major applications [35]. For instance, for long-distance quantum communications, the distance can be decomposed into shorter quantum repeater links connecting entangled memories. Subsequent entanglement swapping operations enable an exponential improvement in distribution time [6]. In this context, the efficiency of the entanglement mapping is a key parameter. As an example, an increase in storage-and-retrieval efficiency from 60% to 90% drastically decreases—typically by 2 orders of magnitude—the average time for entanglement distribution over a distance of 600 kilometers [7].

In this endeavor, quantum state transfer and entanglement mapping between photonic modes and stationary quantum nodes has been demonstrated in different physical platforms [811]. Seminal experiments based on quantum memories with cold neutral atoms [12,13] or doped crystals [14] have enabled the storage and retrieval of heralded single-photon entanglement. Extensions toward high-dimensional [15] and continuous-variable entanglement [16,17] have also been reported. However, in all these implementations, the overall transfer efficiency was limited between 15% and 25%. Despite the recent demonstrations of efficient quantum memories for polarization qubits [18,19], efficient entanglement transfer is a major challenge for network scalability that has yet to be realized.

Here, we demonstrate the implementation of highly efficient and reversible entanglement transfer combined with a very low multiphoton component. As illustrated in Fig. 1, single-photon entanglement is first heralded and then stored into two quantum memories based on elongated atomic ensembles of cold cesium atoms. After readout, entanglement is detected and compared to the input. Our implementation relies on temporally shaped single-photon pulses generated via the Duan–Lukin–Cirac–Zoller protocol (DLCZ) [20,21] and on the dynamic electromagnetically induced transparency (EIT) technique for reversible storage [22]. The demonstrated capability required operating at a very large optical depth (OD) of the atomic ensembles on the ${{D}_1}$ line of cesium, and with a strong and preserved suppression of the two-photon component.

 

Fig. 1. Reversible entanglement transfer. (a) Single-photon entanglement is heralded, stored into two quantum memories, and read out on demand. The overall efficiency of the writing and reading transfer is a key parameter for scaling up quantum networks. (b) The memories are based on elongated ensembles of cold cesium atoms. (c) The EIT scheme used for storage is implemented on the cesium ${{D}_1}$ line. The entangled fields are resonant with the $|g\rangle = |6{S_{1/2}},F = 3\rangle$ to $|e\rangle = |6{P_{1/2}},F^\prime = 4\rangle$ transition while the control field is tuned with the $|s\rangle = |6{S_{1/2}},F = 4\rangle$ to $|e\rangle$ transition.

Download Full Size | PPT Slide | PDF

2. EXPERIMENTAL IMPLEMENTATION

The setup is detailed in Fig. 2(a) and relies on a single 2.5-cm-long atomic ensemble. At a 20 Hz repetition rate, the experimental runs start with a loading phase of 37.5 ms in the magneto-optical trap (MOT). To achieve a large OD, the trap is based on two pairs of rectangular coils and on 2-inch-diameter trapping beams with a total power of 350 mW. An additional 8 ms compression stage, with ramping of the trapping coils current from 3.5 to 15 A, is performed. The MOT coils are then switched off, and polarization gradient cooling is performed for 1 ms. Finally, the atoms are prepared in the ground state $|g\rangle$ by sending a 950-µs-long pulse resonant with the $|s\rangle$ to $|e\rangle$ transition (see Fig. 1). Residual magnetic fields are canceled, and the inhomogeneous broadening of the hyperfine ground state transition is limited to 50 kHz. Overall, the OD on the signal transition reaches 500.

 

Fig. 2. Setup and memory characterization. The experiment consists of two stages operated with the same ensemble of Cs atoms. (a) A 2.5-cm-long ensemble is prepared in a compressed MOT, with an OD up to 500. At first, a single photon is generated using the DLCZ protocol in a small transverse part of the ensemble. After sending a write pulse, the detection of a field-1 photon, with a probability ${p_1}$, heralds the creation of a single collective excitation. A read pulse produces then a field-2 single photon that propagates in a 1 µs fibered delay line and impinges on a beam displacer (BD). The resulting single-photon entanglement is mapped into and out of two memory ensembles via EIT, with a control propagating at 1° angle. Entanglement is finally characterized using a phase shifter (PS), a polarizing beam splitter (PBS), and two single-photon avalanche photodiodes (APD). Before detection, Fabry–Perot cavities (FPC) filter the control background. (b) Suppression $w$ of the two-photon component for Field 2 relative to a coherent state before and after retrieval as a function of ${p_1}$. (c) Storage-and-retrieval efficiency for a single photon in one of the memories as a function of OD. The efficiency reaches $(87 \pm 5)\%$. The line corresponds to the full model (see text). The error bars are obtained from the Poissonian error of the photon counting probabilities.

Download Full Size | PPT Slide | PDF

After the preparation of the atomic sample, the experiment consists of two stages, performed subsequently 250 times per MOT cycle. A single photon is first generated based on the DLCZ protocol [20,21] operated on a small transverse part of the elongated ensemble, with an OD of 6. A 150 ns write pulse detuned by ${-}{15}\;{\rm MHz}$ with the $|g\rangle$ to $|e\rangle$ transition induces spontaneous Raman-scattered fields. The detection of a field-1 photon with the single-photon detector APD1, with a probability ${p_1}$, heralds the creation of a collective atomic excitation. After a programmable delay, set at 200 ns, a pulse resonant with the $|s\rangle$ to $|e\rangle$ transition reads out this excitation, and a field-2 single photon is emitted into a well-defined spatiotemporal mode. To match the spectral-temporal properties of the subsequent EIT storage, the single photon is temporally shaped via the shaping of the read pulse [23]. With a 500 ns Gaussian read pulse, a 300 ns Gaussian-shaped single-photon pulse is obtained. Due to the limited OD used for this stage, the heralding efficiency, i.e., the probability to get a single photon out of the ensemble, is equal to 10%. We note that a larger OD would enable to reach a larger efficiency, with values up to 50% demonstrated in free-space experiments with OD about 20 [21]. However, with an angle between the fields as generally used for filtering and an elongated atomic ensemble necessary for a large OD, the phase-matching mismatch due to the splitting in the ground state can effectively limit the achievable efficiency. This limitation is not present for the EIT process due to the different configuration of the beams.

To characterize the emitted single photon, the suppression $w$ of the two-photon component relative to a coherent state is measured via a Hanbury Brown–Twiss setup. It is given by the ratio ${p_1}{p_{1,2,3}}/({p_{1,2}}{p_{1,3}})$, where ${p_{1,2,3}}$ indicates the probability for triple coincidences and ${p_{1,2}}$ (${p_{1,3}}$) the probability for coincidences between APD1 and APD2 (APD3). This antibunching parameter depends on the excitation probability ${p_1}$, and the values are given in Fig. 2(b).

The single photon is then sent through a 200-m-long single-mode fiber that introduces a 1 µs delay. After this propagation, the single photon impinges on a birefringent beam displacer (BD1) with a polarization at 45° from the axis, generating in the ideal case the single-photon entangled state,

$$\frac{1}{{\sqrt 2}}\left({{{|0}_a}\rangle {{|1}_b}\rangle + {e^{{i\varphi}}}{{|1}_a}\rangle {{|0}_b}\rangle} \right),$$
where $a$ and $b$ denote the two optical paths. The relative phase $\varphi$ is passively stable due to the small interferometer defined by the BDs [2426]. Entangling remote memories would require active phase locking, as demonstrated in [27]. The focus of our study is here on the efficiency of the entanglement transfer that can be achieved.

The second stage of our experiment consists in coherently mapping the entangled fields into two memories by dynamical EIT. The ensembles are defined by two crossed optical paths, which are obtained by focusing the two 4-mm-apart parallel paths into the MOT with a small angle of ${0}{{ .5}^ \circ}$ and a waist of 250 µm. A control field, on resonance with the $|s\rangle$ to $|e\rangle$ transition and with a waist of 3 mm, opens a transparency window in both atomic ensembles. When the entangled fields propagate through the ensembles, the control is switched off adiabatically to coherently map them onto long-lived collective excitation, leading here to one excitation delocalized among the two memories. After a tunable delay, set to 1 µs for the presented results, the atomic entanglement is converted back into entangled photonic modes by switching on the control. Both control and entangled fields have the same circular polarization. To avoid leakage during the mapping, i.e., to ensure that the signal can be contained entirely in the ensemble when the control is switched off, the control power is chosen to provide a slow-light delay equal to twice the signal duration. In order to achieve an efficient entanglement transfer, a large storage-and-retrieval efficiency and therefore a very high OD is required for both paths. The small cross angle enables us to preserve a value up to 500. However, as studied in [18,28], the off-resonance excitation of multiple excited levels in alkaline atoms results into an effective decoherence rate that can limit the efficiency for large OD. For this reason, the experiment is performed here on the ${{D}_1}$ line, where the separation between the two excited states is larger than 1.1 GHz, and this effect is thereby minimized relative to experiments on the ${{D}_2}$ line for which efficiency peaks at about 70% before decreasing for larger OD [18].

3. MEMORY CHARACTERIZATION

We first study the mapping of the heralded single photon into and out of one memory, using one path of the interferometer. Figure 2(c) displays the measured storage-and-retrieval efficiency as a function of OD. Similar results are obtained for both memories. The efficiencies are compared to a full model based on Maxwell–Bloch equations, which takes into account the interaction of the signal and control with all the Zeeman and excited levels [18]. For this model, we consider an intrinsic ground state decoherence rate ${\gamma _0}{= 10^{- 3}}\Gamma$, as extracted from EIT spectra measurement, where $\Gamma /2\pi = 4.5\;{\rm MHz} $ is the decay rate for ${{D}_1}$ line. The data agree well with this model. The maximal achieved efficiency reaches ($87 \pm 5$)% for an OD of about 500. As can be seen in Fig. 2(b) that provides the suppression $w$ of the two-photon component before and after storage, the single-photon character is very well preserved. For the lowest excitation probability ${p_1} \simeq {10^{- 3}}$ used in the memory experiment, $w$ is equal to $0.11 \pm 0.08$ and shows no degradation within the error bar. Relative to the only other work on single-photon storage with high efficiency [19], this value is here 3 times lower, which is a stringent requirement for quantum repeater applications [25,29].

In this implementation, the memory lifetime $\tau$, given by a Gaussian decay $\exp ({- {{(t/\tau)}^2}})$ as it comes from the residual inhomogeneous Zeeman broadening [30], is measured to be $15\,\,\unicode{x00B5}\rm s$. Motional dephasing due to the angle between the signal and the control would otherwise limit the lifetime to about $200\,\,\unicode{x00B5}\rm s$ while the transit of the atoms from the interaction area when the MOT is released puts an upper limit below 10 ms. Various improvements could lead to a few-millisecond time scale, e.g., reducing the angle, which will require a more efficient filtering, optical pumping, which is challenging in high-OD media, or magnetic field bias to lift Zeeman degeneracy [31]. To access the sub-second regime, other optical trapping methods, e.g.,  dipole trapping, are required as demonstrated in [32,33] with 3D optical lattices. In that case, a cavity around the atomic ensemble might be necessary as in [33] to preserve a large OD.

For completeness, we give here the typical experimental rates. During the 1 ms phase when generation and storage are performed, the heralding rate to generate the single photon is of about 25 per second, and the rate of entanglement generation is reduced to 18 per second due to couplings and loss in the delay line. After storage-and-retrieval, propagation and filtering (30% transmission), and detection (50% efficiency), the single-photon detection rate is about 1.7 per second. Given the specific duty cycle of 1/50 in our implementation, the overall entanglement generation rate and single-photon detection rate are about 0.3 and 0.03 per second, respectively.

4. ENTANGLEMENT TRANSFER

We now turn to the entanglement characterization. For this purpose, we follow the model-independent determination introduced in [27] that consists of measuring a reduced density matrix $\tilde \rho$ by restricting to the subspace with no more than one photon per mode and assuming that all off-diagonal elements between states with different numbers of photons are zero. This method provides a lower bound for the entanglement. In the basis $|{i_a},{j_b}\rangle$ with the number of photons $\{i,j\} = \{0,1\}$, $\tilde \rho$ can be written as

$$\tilde \rho = \frac{1}{P}\left({\begin{array}{cccc}{{p_{00}}}&0&0&0\\0&{{p_{01}}}&d&0\\0&{{d^*}}&{{p_{10}}}&0\\0&0&0&{{p_{11}}}\end{array}} \right),$$
where ${p_{i,j}}$ corresponds to the probability to find $i$ photon in mode $a$ and $j$ photon in mode $b$, $P = {p_{00}} + {p_{01}} + {p_{10}} + {p_{11}}$, and $d$ is the coherence between the states ${|0_a}{,1_b}\rangle$ and ${|1_a}{,0_b}\rangle$. The coherence term is given by $d = V({p_{01}} + {p_{10}})/2$, where $V$ is the visibility of the interference fringe between mode $a$ and $b$ when their relative phase is scanned. The reduced density matrix enables us to calculate the concurrence ${\cal C}$ [34], i.e., a monotone measurement of entanglement, as
$${\cal C} = \frac{1}{P}{\rm max}\left({2d - 2\sqrt {{p_{00}}{p_{11}}} ,0} \right),$$
where ${\cal C}$ takes values between 0 for a separable state to 1 for a maximally entangled state.

Experimentally, upon the detection of a heralding photon on APD1, we first measure the ${p_{i,j}}$ probabilities with APD2 and APD3. The two detectors assess the presence of photons in mode $a$ or $b$ by monitoring the two outputs of a polarizing beam splitter placed after recombination of the two paths of the interferometer. The measured probabilities are provided in Table 1. The next step is to measure interference fringes by mixing the two modes and scanning their relative phase $\varphi$. This can be done by using a set of two half-wave plates placed after BD2, with their axis parallel to the field polarizations and varying their relative angle. The experimental fringes are given in Figs. 3(a) and 3(b). The average raw visibilities are ${V_{{\rm in}}} = 0.96 \pm 0.03$ and ${V_{{\rm out}}} = 0.87 \pm 0.04$. The decrease in visibility after storage is mainly due to a slight contamination by the control field. After correction of this background, we obtain a visibility ${V_{{\rm out}}} = 0.94 \pm 0.03$. The reconstructed density matrices ${\tilde \rho _{{\rm in}}}$ and ${\tilde \rho _{{\rm out}}}$ are given in Figs. 3(c) and 3(d), respectively.

Tables Icon

Table 1. Measured Probabilities ${p_{\textit{ij}}}$ and Estimated Concurrences ${\cal C}$ before and after Storage, without Correction for Loss, Detection, and Noisea

 

Fig. 3. Measurement of entanglement for the input and output entangled fields. The relative phase $\varphi$ between the two modes is scanned and leads to interferences fringes for (a) before storage with visibility $V = 0.96 \pm 0.03$ and (b) after storage and readout with $V = 0.87 \pm 0.04$ ($V = 0.94 \pm 0.04$ after background correction). The density matrix is then derived for (c) before the memory with a concurrence ${{\cal C}_{{\rm in}}} = (5.9 \pm 1.2) \times {10^{- 3}}$ and (d) after the memory with ${{\cal C}_{{\rm out}}} = (4.7 \pm 0.9) \times {10^{- 3}}$. The error bars correspond to the propagated Poissonian error of the photon counting probabilities and the $1\sigma$ confidence interval of the sine fit applied to the fringes.

Download Full Size | PPT Slide | PDF

We note that when measuring the entanglement for the input modes, we could not remove the atoms since we use the same atomic ensemble to generate the single photon and store subsequently the entanglement. Therefore, we built another path with an identical interferometer next to our atomic cloud. This reference path is recombined with the memory path before filtering and detection. We estimate the input entanglement by correcting on the losses ratio between the two interferometers.

The raw data given in Table 1 allow us to characterize the entanglement transfer performances. The first crucial parameter is the suppression of the two-photon component. It can be evaluated here by the ratio $w = {p_{11}}/({p_{10}} \cdot {p_{01}})$. This parameter amounts to ${w_{{\rm in}}} = 0.11 \pm 0.07$ and ${w_{{\rm out}}} = 0.08 \pm 0.06$ before and after storage, respectively, thereby confirming the preservation of the single-photon character. Also, the overall storage-and-retrieval efficiency $\eta$ is given by the ratio of the one-photon probabilities ${({p_{10}} + {p_{01}})_{{\rm out}}}/({p_{10}} + {p_{01}}{)_{{\rm in}}}$. This ratio is equal to $\eta = (85 \pm 4)\%$, in agreement with the efficiencies measured for each memory operated independently. These values combined with the achieved visibilities confirm the efficient, noiseless, and reversible coherent mapping.

From these data, one can estimate the concurrence of entanglement. Without correcting for losses, detection efficiencies, and residual background noise, we obtain a value for the concurrence before storage of ${{\cal C}_{{\rm in}}} = (5.9 \pm 1.2) \times {10^{- 3}}$ and a value after retrieval of ${{\cal C}_{{\rm out}}} = (4.7 \pm 0.9) \times {10^{- 3}}$. The entanglement transfer can be evaluated by the ratio of the concurrences, $\lambda = {{\cal C}_{{\rm out}}}/{{\cal C}_{{\rm in}}}$, as initially done in [12]. In our implementation, this parameter reaches $\lambda = (80 \pm 20)\%$. In the ideal case, this value is equal to the storage-and-retrieval efficiency of the involved memories. If the visibility of the fringes obtained after retrieval is corrected from background noise, the output concurrence is increased to $(5.3 \pm 0.9) \times {10^{- 3}}$ and the ratio $\lambda$ to $88_{- 23}^{+ 12}\%$. These numbers represent more than a threefold increase in transfer efficiency relative to previous works.

The error bar on $\lambda$ is mainly due to the uncertainty obtained on the values of ${p_{11}}$. This parameter is known to be difficult to measure as it corresponds to events for which the occurrence decreases rapidly with the suppression of the two-photon component [12]. 180 h of data taking was necessary to specifically access these probabilities, and few coincidences were obtained. Indirect methods could be used to assess entanglement but would require specific assumptions about the initial state and noise statistics [14] or performing homodyne measurements [35]. In the broad context of quantum networks, this result also emphasizes the topical importance of developing efficient benchmarking tools [36].

5. CONCLUSION

In conclusion, we have reported the first realization of a highly efficient and reversible entanglement transfer between light and quantum memories, together with a strong and preserved suppression of the two-photon component. The demonstrated capability is an important step toward the development of scalable networking architectures. A central challenge remains to demonstrate a quantum link efficiency greater than unity [37,38], i.e., a preparation rate of entangled memories much larger than the decoherence rate, a cornerstone yet to be demonstrated in a cold atom setting. Combining high efficiency as shown here with longer lifetime [3133] and with multiplexing in multiple degrees of freedom [3942] will be necessary.

Funding

H2020 Future and Emerging Technologies (FETFLAG Quantum Internet Alliance 820445);H2020 European Research Council (project HybridNet 307450); Agence Nationale de la Recherche (project quBIC ANR-17-CE39-0005)H2020 Marie Skłodowska-Curie Actions (projects 705161, 708216) for A.S.S. and M.C. respectively.

Acknowledgment

The authors thank P. Vernaz-Gris and K. Huang for their contributions in the early stage of the experiment.

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef]  

2. T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014). [CrossRef]  

3. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018). [CrossRef]  

4. D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012). [CrossRef]  

5. P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014). [CrossRef]  

6. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998). [CrossRef]  

7. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]  

8. K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016). [CrossRef]  

9. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]  

10. M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018). [CrossRef]  

11. O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018). [CrossRef]  

12. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]  

13. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015). [CrossRef]  

14. I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012). [CrossRef]  

15. Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015). [CrossRef]  

16. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011). [CrossRef]  

17. Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017). [CrossRef]  

18. P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018). [CrossRef]  

19. Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019). [CrossRef]  

20. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]  

21. J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006). [CrossRef]  

22. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]  

23. P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016). [CrossRef]  

24. D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004). [CrossRef]  

25. C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007). [CrossRef]  

26. J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007). [CrossRef]  

27. C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef]  

28. Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018). [CrossRef]  

29. J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007). [CrossRef]  

30. K. S. Choi, Coherent Control of Entanglement with Atomic Ensembles Ph.D. thesis (California Institute of Technology, 2011).

31. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013). [CrossRef]  

32. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008). [CrossRef]  

33. S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016). [CrossRef]  

34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]  

35. O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013). [CrossRef]  

36. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020). [CrossRef]  

37. P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018). [CrossRef]  

38. J. Laurat, “Entanglement on demand,” Nature 558, 192–193 (2018). [CrossRef]  

39. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014). [CrossRef]  

40. Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017). [CrossRef]  

41. M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017). [CrossRef]  

42. C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  2. T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014).
    [Crossref]
  3. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
    [Crossref]
  4. D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
    [Crossref]
  5. P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
    [Crossref]
  6. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
    [Crossref]
  7. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  8. K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
    [Crossref]
  9. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [Crossref]
  10. M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
    [Crossref]
  11. O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
    [Crossref]
  12. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [Crossref]
  13. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
    [Crossref]
  14. I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
    [Crossref]
  15. Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
    [Crossref]
  16. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
    [Crossref]
  17. Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
    [Crossref]
  18. P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
    [Crossref]
  19. Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
    [Crossref]
  20. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  21. J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
    [Crossref]
  22. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [Crossref]
  23. P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
    [Crossref]
  24. D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
    [Crossref]
  25. C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
    [Crossref]
  26. J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
    [Crossref]
  27. C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
    [Crossref]
  28. Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
    [Crossref]
  29. J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
    [Crossref]
  30. K. S. Choi, Coherent Control of Entanglement with Atomic Ensembles Ph.D. thesis (California Institute of Technology, 2011).
  31. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
    [Crossref]
  32. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
    [Crossref]
  33. S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
    [Crossref]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [Crossref]
  35. O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
    [Crossref]
  36. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
    [Crossref]
  37. P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
    [Crossref]
  38. J. Laurat, “Entanglement on demand,” Nature 558, 192–193 (2018).
    [Crossref]
  39. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
    [Crossref]
  40. Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
    [Crossref]
  41. M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
    [Crossref]
  42. C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
    [Crossref]

2020 (1)

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

2019 (1)

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

2018 (7)

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

J. Laurat, “Entanglement on demand,” Nature 558, 192–193 (2018).
[Crossref]

2017 (3)

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

2016 (3)

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

2015 (2)

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

2014 (3)

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

2013 (2)

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

2012 (2)

D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

2011 (2)

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

2010 (2)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
[Crossref]

2008 (3)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

2007 (3)

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

2006 (1)

2005 (1)

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

2004 (1)

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[Crossref]

2003 (1)

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

1998 (2)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

Acosta, V. M.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Afzelius, M.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
[Crossref]

Albrecht, B.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Aqua, Z.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Bancal, J.-D.

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Bao, X.-H.

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

Bechler, O.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Bishof, M.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

Blatt, R.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014).
[Crossref]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

Bruch, R.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Bussières, F.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

Bustard, P. J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Cao, M.

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

Chabaud, U.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Chang, W.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

Chávez, M.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Chen, G.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Chen, H.-S.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Chen, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Chen, Y.-C.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Chen, Y.-F.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Chen, Y.-H.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

K. S. Choi, Coherent Control of Entanglement with Atomic Ensembles Ph.D. thesis (California Institute of Technology, 2011).

Chou, C.-W.

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
[Crossref]

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

Clausen, C.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

Croke, S.

D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
[Crossref]

D’Auria, V.

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Dabrowski, M.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Dayan, B.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

de Riedmatten, H.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
[Crossref]

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

Deng, R.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Ding, D.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Drucker, N.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Du, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Duan, L.-M.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Dudin, Y. O.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

Eisert, J.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Elkouss, D.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

England, D. G.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Farrera, P.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Felinto, D.

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
[Crossref]

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

Fernholz, T.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Finkelstein, R.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Gisin, N.

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Gottesman, D.

D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
[Crossref]

Guendelman, G.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Guo, G.-C.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Gurovich, D.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Han, Y.-J.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Hangleiter, D.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Hanson, R.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Heinze, G.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Heshami, K.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Ho, M.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Hsiao, Y.-F.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Hua, Y.-L.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Huang, K.

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

Humphreys, P. C.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Hung, C.-C.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Jennewein, T.

D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
[Crossref]

Jensen, K.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Jia, X.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Jian, N.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

Jiang, L.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

Kalb, N.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Kashefi, E.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Kessler, E. M.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
[Crossref]

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

Kómár, P.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

Körber, M.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

Krauter, H.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Kuzmich, A.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[Crossref]

Langenfeld, S.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

Laurat, J.

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

J. Laurat, “Entanglement on demand,” Nature 558, 192–193 (2018).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14, 6912–6918 (2006).
[Crossref]

Lee, C.-H.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Leszczynski, A.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Li, C.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

Li, C.-F.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Li, J.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Li, S.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Liao, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Lin, S.-X.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Lipka, M.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Liu, X.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Liu, Y.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Lovsky, Y.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Lukin, M. D.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Markham, D.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Markham, M.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Matsukevich, D. N.

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Mazelanik, M.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Mor, O. E.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Morin, O.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Morits, J. P. J.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Netser, M.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Neuzner, A.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Nielsen, B. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Northup, T. E.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014).
[Crossref]

Nunn, J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Ohana, T.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Owari, M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Pan, J.-W.

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

Parekh, R.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Parniak, M.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Peng, K.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Plenio, M. B.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Polyakov, S. V.

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

Polzik, E. S.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Pu, Y.-F.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Rempe, G.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

Ritter, S.

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

Rosenblum, S.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Roth, I.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Sangouard, N.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Schomburg, E.

Schouten, R. N.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Sekatski, P.

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Serafini, A.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Shafir, E.

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

Sheremet, A. S.

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

Shi, B.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Shi, S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
[Crossref]

Sørensen, A. S.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Su, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Sussman, B. J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Teo, C.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Tian, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Tsai, P.-J.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Twitchen, D. J.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Usmani, I.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Vermeulen, R. F. L.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

Vernaz-Gris, P.

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

Walk, N.

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Wang, H.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Wang, X.-J.

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

Wang, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Wasilewski, W.

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Wehner, S.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Wolf, M. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

Wu, L.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Wu, Y.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Xie, C.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Xu, J.-S.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Xu, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Yan, H.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Yan, Z.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Yang, H.-X.

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

Yang, S.-J.

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

Ye, J.

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

Yu, I. A.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

Zhang, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Zhang, W.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Zhang, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Zhao, R.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

Zhou, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Zhou, Z.-Q.

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Zhou, Z.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

Zhu, S. L.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

J. Mod. Opt. (1)

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref]

Nat. Commun. (5)

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref]

P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9, 363 (2018).
[Crossref]

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7, 13556 (2016).
[Crossref]

Y.-F. Pu, N. Jian, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8, 15359 (2017).
[Crossref]

M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8, 2140 (2017).
[Crossref]

Nat. Photonics (7)

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10, 381–384 (2016).
[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).
[Crossref]

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, “Decoherence-protected memory for a single-photon qubit,” Nat. Photonics 12, 18–21 (2018).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9, 332–338 (2015).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8, 356–363 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Nat. Phys. (4)

P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum networks of clocks,” Nat. Phys. 10, 582–587 (2014).
[Crossref]

O. Bechler, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, and B. Dayan, “A passive photon–atom qubit swap operation,” Nat. Phys. 14, 996–1000 (2018).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2008).
[Crossref]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable state,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Nat. Rev. Phys. (1)

J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nat. Rev. Phys. 2, 382–390 (2020).
[Crossref]

Nature (6)

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref]

J. Laurat, “Entanglement on demand,” Nature 558, 192–193 (2018).
[Crossref]

C.-W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

New J. Phys. (1)

J. Laurat, C.-W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207 (2007).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

C. Simon, H. de Riedmatten, and M. Afzelius, “Temporally multiplexed quantum repeaters with atomic gases,” Phys. Rev. A 82, 010304 (2010).
[Crossref]

Phys. Rev. Lett. (8)

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Laurat, and N. Sangouard, “Witnessing trustworthy single-photon entanglement with local homodyne measurements,” Phys. Rev. Lett. 110, 130401 (2013).
[Crossref]

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[Crossref]

J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007).
[Crossref]

Z.-Q. Zhou, Y.-L. Hua, X. Liu, G. Chen, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett. 109, 070503 (2012).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).
[Crossref]

Rev. Mod. Phys. (3)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

Science (3)

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision of the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[Crossref]

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

Other (1)

K. S. Choi, Coherent Control of Entanglement with Atomic Ensembles Ph.D. thesis (California Institute of Technology, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Reversible entanglement transfer. (a) Single-photon entanglement is heralded, stored into two quantum memories, and read out on demand. The overall efficiency of the writing and reading transfer is a key parameter for scaling up quantum networks. (b) The memories are based on elongated ensembles of cold cesium atoms. (c) The EIT scheme used for storage is implemented on the cesium ${{D}_1}$ line. The entangled fields are resonant with the $|g\rangle = |6{S_{1/2}},F = 3\rangle$ to $|e\rangle = |6{P_{1/2}},F^\prime = 4\rangle$ transition while the control field is tuned with the $|s\rangle = |6{S_{1/2}},F = 4\rangle$ to $|e\rangle$ transition.
Fig. 2.
Fig. 2. Setup and memory characterization. The experiment consists of two stages operated with the same ensemble of Cs atoms. (a) A 2.5-cm-long ensemble is prepared in a compressed MOT, with an OD up to 500. At first, a single photon is generated using the DLCZ protocol in a small transverse part of the ensemble. After sending a write pulse, the detection of a field-1 photon, with a probability ${p_1}$, heralds the creation of a single collective excitation. A read pulse produces then a field-2 single photon that propagates in a 1 µs fibered delay line and impinges on a beam displacer (BD). The resulting single-photon entanglement is mapped into and out of two memory ensembles via EIT, with a control propagating at 1° angle. Entanglement is finally characterized using a phase shifter (PS), a polarizing beam splitter (PBS), and two single-photon avalanche photodiodes (APD). Before detection, Fabry–Perot cavities (FPC) filter the control background. (b) Suppression $w$ of the two-photon component for Field 2 relative to a coherent state before and after retrieval as a function of ${p_1}$. (c) Storage-and-retrieval efficiency for a single photon in one of the memories as a function of OD. The efficiency reaches $(87 \pm 5)\%$. The line corresponds to the full model (see text). The error bars are obtained from the Poissonian error of the photon counting probabilities.
Fig. 3.
Fig. 3. Measurement of entanglement for the input and output entangled fields. The relative phase $\varphi$ between the two modes is scanned and leads to interferences fringes for (a) before storage with visibility $V = 0.96 \pm 0.03$ and (b) after storage and readout with $V = 0.87 \pm 0.04$ ($V = 0.94 \pm 0.04$ after background correction). The density matrix is then derived for (c) before the memory with a concurrence ${{\cal C}_{{\rm in}}} = (5.9 \pm 1.2) \times {10^{- 3}}$ and (d) after the memory with ${{\cal C}_{{\rm out}}} = (4.7 \pm 0.9) \times {10^{- 3}}$. The error bars correspond to the propagated Poissonian error of the photon counting probabilities and the $1\sigma$ confidence interval of the sine fit applied to the fringes.

Tables (1)

Tables Icon

Table 1. Measured Probabilities p ij and Estimated Concurrences C before and after Storage, without Correction for Loss, Detection, and Noisea

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 2 ( | 0 a | 1 b + e i φ | 1 a | 0 b ) ,
ρ ~ = 1 P ( p 00 0 0 0 0 p 01 d 0 0 d p 10 0 0 0 0 p 11 ) ,
C = 1 P m a x ( 2 d 2 p 00 p 11 , 0 ) ,

Metrics