Abstract

Mid-infrared (MIR) detection systems are pursuing element detectors with a high operating temperature, fast response speed, and high sensitivity to satisfy the increasing performance requirements that conventional detectors are unlikely to achieve. In this paper, we report a lateral photovoltaic MIR detector (LPVMIRD) based on a two-dimensional electron gas (2DEG) at the polar zincblende/rocksalt interface of CdTe/PbTe (111) heterojunctions (HJs). The LPVMIRDs possess identical asymmetric structures and operate without external biased voltage. Following the working principle of the LPVMIRDs, an analytical model is established where device performances are predicted theoretically. The proposed model is also applicable to other HJ systems based on a 2DEG. Furthermore, the LPVMIRDs are developed experimentally, and through infrared photoresponse characterizations, their response is revealed to originate from the intrinsic transition of PbTe caused by the unique energy-band alignment of the HJs. At a wavelength of 3 µm, the highest detectivity of the fabricated LPVMIRDs reaches ${1.5} \times {{10}^{10}}$ Jones. Moreover, the infrared impulse responses demonstrate an extremely fast response speed. The impressive performance characteristics of the LPVMIRDs are promising for applications in uncooled MIR detection.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Mid-infrared (MIR) detection is highly desirable for numerous applications such as pollution monitoring, thermal imaging, and spatial orientation [16]. The demand for advanced detection systems with improved performance (e.g., sensitivity, response speed, and operating temperature) is increasing rapidly [7]. Typically, MIR photodetectors are based on HgCdTe, InSb, quantum wells, and superlattices, which have been studied extensively and are popular owing to their high sensitivity and fast response speed at low temperatures [811]. However, these detectors exhibit poor response performance at room temperature (RT) [12,13]. Although several uncooled infrared detectors based on two-dimensional materials have demonstrated better sensitivity, they also have displayed unacceptably long response times [14,15]. Therefore, the industrialization of these detectors stalled. Similarly, uncooled PbSe and PbS bulk detectors have been reported to demonstrate satisfactory sensitivity but a slow response speed [1618]. Likewise, thermal detectors (including µ-bolometers), thermopiles, and pyroelectric detectors operate successfully at RT [19]; however, their intrinsic longer response times and lower sensitivities are inferior to alternative detectors [20]. Presently, uncooled MIR detectors with high sensitivity and fast response speed remain an urgent requirement.

PbTe is a traditional narrow-bandgap semiconductor; photodetectors based on bulk PbTe crystals work only at low temperatures, for which their high dielectric constant drops their response speed [21]. The recently discovered novel CdTe (zincblende)/PbTe (rocksalt) heterojunction (HJ) system has displayed a two-dimensional electron gas (2DEG) at the (111) polar interface with a high carrier density and high mobility. In this HJ system, the mismatch in the bonding coordination at the interface is the origin of the 2DEG, representing a clear departure from conventional 2DEG systems [2225]. In 2013, Jin et al. predicted that HJs can spontaneously form a 2DEG without intentional doping, with this hypothesis confirmed by recent experiments [23,25]. When irradiated by MIR waves, photo-generated carriers can be efficiently produced in the PbTe; subsequently, electrons (but no holes) move rapidly into the 2DEG channel exhibiting a unique energy band structure that corresponds to the CdTe/PbTe interface. Integrating an asymmetric structure on one of the HJs causes a lateral photovoltage (LPV) to develop between the two ends of the 2DEG channel, which can detect MIR signals at RT without an external biased voltage. Therefore, this new type of uncooled MIR detector is referred to as the LPV MIR detector (LPVMIRD).

Herein, an analytical model for LPVMIRDs is established, through which the performances of the devices are analyzed and calculated. LPVMIRDs based on CdTe/PbTe HJs using micro-nano technologies are also fabricated and characterized with respect to their photoresponse spectra, impulse-laser responses, and continuous wave (CW)-laser responses. The fabricated LPVMIRDs demonstrate both high sensitivity and extremely fast response speeds, accredited to the novel HJs and the working principle of the devices. In addition, the impacts of dimensional parameters, infrared power, and operating temperature on the device response are also studied. The proposed high-performance LPVMIRDs provide competitive performance indicators that indicate their application potential in uncooled MIR detection systems.

2. FABRICATION PROCESS AND ANALYTICAL MODEL

The CdTe/PbTe HJs were grown by the molecular beam epitaxy technique. First, a 1 µm thick PbTe layer was grown on a freshly cleaved ${{\rm BaF}_2}$ (111) substrate. A CdTe layer with a thickness of 200 nm was subsequently grown on the PbTe layer, thus producing a CdTe/PbTe HJ without intentional doping. The details of the growth process and characterizations can be found in Refs. [22,24]. For the CdTe/PbTe HJ systems, there is a high-density and high-mobility 2DEG at the interface [23,25]. Hall effect measurements revealed that the sheet density and mobility of the 2DEG are ${4.8} \times {{10}^{12}}\;{{\rm cm}^{- 2}}$ and ${900}\;{{\rm cm}^2}/{\rm V}\;{\cdot}\;{\rm s}$, respectively. Subsequently, LPVMIRDs were fabricated using the as-grown CdTe/PbTe HJs. Figure 1(a) displays a schematic of an LPVMIRD with an asymmetric field-effect transistor (FET)-like structure, the inset of which is a cross-sectional SEM image of the as-grown HJ. A 50 nm thick copper (Cu) film was first deposited on the HJ to develop two electrodes, named as ${S}$ and ${ D}$. After thermal annealing at 150°C for 10 min, the Cu film penetrated through the CdTe layer and into the interface of the HJ, as shown in Fig. 1(a). In this way, the two electrodes achieve ohmic contact with the 2DEG, thereby forming a 2DEG channel between ${S}$ and ${D}$. If Cu also penetrates the PbTe layer, the high-conductivity of the 2DEG results in this layer being open-circuited, let alone the potential barrier between the Cu contact and the PbTe layer. Next, a 400 nm thick silicon dioxide (${{\rm SiO}_2}$) and a 200 nm thick gold (Au) film were deposited successively; thus, the LPVMIRD was successfully developed.

 

Fig. 1. (a) Schematic of a LPVMIRD based on a CdTe/PbTe HJ with 2DEG, inset: a cross-sectional SEM image of the HJ. (b) Top view of the LPVMIRD with dimensional parameters. (c) Energy band profile of the CdTe/PbTe HJ where black balls, red solid, and hollow circles represent the electrons of the 2DEG, the photo-generated electrons, and holes in PbTe, respectively; CB and VB represent the conduction and valance bands, respectively.

Download Full Size | PPT Slide | PDF

As shown in Fig. 1(a), the area between ${S}$ and ${ D}$ is partly shadowed by the Au film [i.e., shadowed region (SR)], and the film can block the SR entirely from infrared radiation incident from above. On the other side, in the area without the Au film shadow [i.e., absorbing region (AR)], the incident infrared radiation propagates through the insulating ${{\rm SiO}_2}$ and wide-bandgap CdTe layers, and is subsequently absorbed by the narrow-bandgap PbTe layer. Figure 1(b) displays the top view of the detector and the positional relationship of the two regions, in which the two electrodes can clearly be seen. The length of the AR and the SR are ${L_a}$ and ${L_s}$, respectively, and both have a width of $W$. The total distance between ${S}$ and ${D}$ is ${L_{a + s}} = {L_a} + {L_s}$. The analytical model and working principle of the LPVMIRDs are described as follows. When the detector in Fig. 1(a) is irradiated from above by infrared radiation, only the PbTe in the AR is exposed to it, which generates a large number of electron–hole pairs. Aided by the diffusion effect, both the electrons and holes move instantly towards the interface. We know that the valence-band offset (VBO) is greater than the conduction-band offset (CBO) at the interface with the CdTe/PbTe HJs [23] (see Fig. S1, Supplement 1); therefore, the non-equilibrium holes will be blocked by the large VBO as they approach the 2DEG channel, but the non-equilibrium electrons will pass through the small CBO easily and move into the 2DEG channel. The physical picture described above can be understood clearly with the help of the energy band profile of the HJ displayed in Fig. 1(c). In this case, the 2DEG channel in the AR possesses more electrons than that in the SR. Moreover, a difference in the electric potential between electrodes ${D}$ and ${S}$ (${V_{\textit{DS}}}$), i.e., LPV, arises without external bias for ${V_{\textit{DS}}}\; \gt \;{0}$. If ${D}$ and ${S}$ are connected by an external circuit beforehand, the excess electrons in the 2DEG channel in the AR are collected immediately by ${S}$. Meanwhile, charge neutrality is reestablished by electrons drawn from the external circuit through the ${D}$ electrode [26]. Thus, a photocurrent, from ${S}$ to ${D}$, occurs in the channel, thereby driving the LPVMIRD. Furthermore, the response speed of the LPVMIRD is determined by the transit time of the photo-generated electrons from the PbTe layer into the channel [27], such that it is reasonable to expect that the response speed is ultrafast. According to the analytical model described above, the performance parameters of the LPVMIRDs (including LPV, responsivity, and detectivity) are theoretically analyzed and calculated in Appendix A. The analytical model could also be applied to other HJ materials with 2DEG, while the working waveband of the LPVMIRDs could be controlled by varying material systems.

Three groups of LPVMIRDs were fabricated and characterized, with each group including three units. The detectors in the first group possess an interdigital structure comprising eight cells, whereas those in the other groups have the structure as depicted in Fig. 1(b). The detailed dimensional parameters of the fabricated LPVMIRDs are listed in Table 1. For units $\# {X} - {Y}$ (${X}$, ${Y} = {1}$, 2, and 3), those with the same ${X}$ are in the same group, and those with the same ${Y}$ have the same ${L_a}/{L_{a + s}}\!$. The term ${L_a}/{L_{a + s}}$ represents the ratio of ${L_a}$ to ${L_{a + s}}\!$, i.e., the proportion of the AR in the total region between ${S}$ and ${D}$. Herein, the term “${A}/{B}$” indicates the ratio of ${A}$ to ${B}$. The infrared response spectra were measured with a grating monochromator Omni-$\lambda$ 300, a globar illuminant, a low-noise current amplifier (SR570, using a gain of 5 µA/V), and a lock-in amplifier (SR830) at a chopped frequency of 377 Hz. The current-voltage (I-V) characteristics of the LPVMIRDs were measured using a semiconductor device analyzer (Agilent B1500A). In the impulse-laser response measurements, the fundamental output from a femtosecond (fs)-pulse Yb:KGW laser (1030 nm, 220 fs Gaussian fit, 100 kHz) was introduced to the optical parametric amplifier (ORPHEUS-ONE) to produce infrared laser beams with different wavelengths. The signals were amplified by a high-speed current amplifier (DHPCA-100, with a gain of 1 mA/V), and then displayed by a digital oscilloscope (TBS 1052B). In the CW-laser response measurements, a diode pumped solid state (DPSS) laser with a wavelength of 1064 nm and adjustable powers was used as the illuminant and was chopped with a frequency of 400 Hz. The SR570 amplifier and the TBS 1052B oscilloscope were used to amplify and display the signals, respectively. Furthermore, to vary the operating temperature, the detector being measured was packaged in a thermoelectric cooler. The operating details for the measurement setups of the infrared response spectra, impulse-laser, and CW-laser responses are provided in Figs. S2, S3, and S4, respectively, in Supplement 1. Unless stated otherwise, all aforementioned measurements were performed at RT.

Tables Icon

Table 1. Dimensional Parameters of the LPVMIRDs

3. RESULTS AND DISCUSSION

The infrared photocurrent spectra of the fabricated LPVMIRDs were measured and then calibrated using a background spectrum obtained for a PbSe photoconductor, thus providing the infrared response spectra of the LPVMIRDs. The power of the infrared radiation (incident from the illuminant at 3 µm) was measured to be ${4.15}\;\unicode{x00B5} {{\rm W/cm}^2}$, and the corresponding responsivity was calculated to be 1.09 A/W. The response spectra were calibrated further using the responsivity at 3 µm and are shown in Fig. 2(a). The cutoff wavelength of the response spectra is approximately 4 µm, which corresponds to the bandgap of PbTe (0.32 eV), indicating that the PbTe layer plays a crucial role in the absorption of incident infrared radiation and that the origin of the response is the photoelectric effect rather than the photothermoelectric effect [28]. Interestingly, there is a plateau from 3.3 µm (${\lambda _0}$ and ${\sim}{0.376}\;{\rm eV}$) to 3.7 µm in all of the response spectra, as shown in Fig. 2(a). For conventional photodetectors, responsivities rise sharply from cutoff wavelengths to peaks, and no plateau is supposed to occur in this region. In this case, the appearance of the plateau is due to the CBO (90 meV, see Fig. S1, Supplement 1) at the CdTe/PbTe HJ interface. In the region of the plateau, the energy of the photo-generated electrons in the PbTe layer is lower than the CBO, such that electrons are partially obstructed from diffusing into the 2DEG channel, thus preventing the increase in responsivity. When the incident infrared wavelength is shorter than ${\lambda _0}$, the energy of the electrons after the transition is higher than the CBO and is able to move into the channel without being blocked. Therefore, a further responsivity increase is observed. Moreover, it is observed that the CBO could be estimated by the energy at ${\lambda _0}$ minus the bandgap of PbTe. The CBO is calculated to be about 0.056 eV, which is consistent with the value given in Fig. S1, Supplement 1.

 

Fig. 2. (a) Infrared response spectra of the fabricated LPVMIRDs. (b) ${R_i}/{R_i}({\rm max})$ at 3 µm versus ${L_a}/{L_{a + s}}$ obtained from both calculations and experiments, where ${R_i}({\rm max})$ is the maximum responsivity in the respective group. (c) ${V_{\textit{DS}}}/{V_{\textit{DS}}}({\rm max})$ at 3 µm versus $L_{a + s}^2$ obtained from both calculations and experiments, where ${V_{\textit{DS}}}({\rm max})$ is the LPV of the detectors in group 3 (they exhibit the largest ${L_{a + s}}$ among the three groups). In (b) and (c), the positions of the vertical dashed lines represent the calculated values for the fabricated LPVMIRDs. (d) I-V curves of #X-2 (units #1-2, #2-2, and #3-2). (e) Normalized $\beta$ versus wavelength of unit #2-2.

Download Full Size | PPT Slide | PDF

The relationship between the performances and the dimensional parameters of the detectors was studied. Figure 2(b) displays ${R_i}/{R_i}({\rm max})$ at 3 µm versus ${L_a}/{L_{a + s}}$ obtained from both calculations and experiments for each group, where ${R_i}({\rm max})$ is the maximum responsivity in the respective group, and the calculated results are derived from Eq. (A11) (see Appendix A). In the calculations, when ${L_a}/{L_{a + s}} \le {0.5}$ (i.e., ${L_a} \le {L_s}\!$), ${R_i}/{R_i}({\rm max})$ linearly increases; when ${L_a}/{L_{a + s}} \gt {0.5}$ (i.e., ${L_a} \gt {L_s}\!$), ${R_i}/{R_i}({\rm max})$ linearly decreases. Moreover, the slopes of the two lines are equivalent, with the ${R_i}({\rm max})$ corresponding to ${L_a}/{L_{a + s}} = {0.5}$ in all groups. The measured results agree closely with the calculated ones. In detail, the responsivity at ${L_a}/{L_{a + s}} = {0.5}$ is nearly twice as high as that at ${L_a}/{L_{a + s}} = {0.25}$ or 0.75 in every group. The measured ${R_i}({\rm max})$ values for groups 1 to 3 are 1.01, 1.09, and 1.04 A/W belonging to units #1-2, #2-2, and #3-2, respectively, as illustrated in Fig. 2(b). Measurements of ${V_{\textit{DS}}}/{V_{\textit{DS}}}({\rm max})$ at 3 µm versus $L_{a + s}^2$ with fixed ${L_a}/{L_{a + s}}$ obtained from both calculations and experiments are shown in Fig. 2(c), where the ${V_{\textit{DS}}}({\rm max})$ values are the LPVs of the detectors in group 3 (as these were the largest ${L_{a + s}}$ among the three groups). The calculated results derive from Eq. (A9) (see Appendix A), where ${V_{\textit{DS}}}/{V_{\textit{DS}}}({\rm max})$ is proportional to $L_{a + s}^2$ when ${L_a}/{L_{a + s}}$ is fixed. The experimental LPVs were obtained using the following equation:

$${\rm LPV }= {V_{\textit{DS}}} = {I_p}R = {R_i}{P_0}{A_d}R,$$
where the channel resistances (i.e., $R$) were obtained from the I-V characteristics of the LPVMIRDs. Figure 2(d) shows the measured I-V curves of units #X-2. It is observed that all of the I-V characteristics are highly linear, demonstrating a good ohmic contact between the electrodes and the 2DEG of the fabricated LPVMIRDs. In addition, the three experimental ${V_{\textit{DS}}}/{V_{\textit{DS}}}({\rm max})$ versus $L_{a + s}^2$ data are consistent with the calculated ones, as shown in Fig. 2(c). The experimental results shown in Figs. 2(b) and 2(c) directly verify the calculated ones in Appendix A. According to Eq. (A12), the detectivity of #3-2 at 3 µm is ${1.5} \times {{10}^{10}}$ Jones, which is the highest among all of the fabricated units.

Equation (A11) (see Appendix A) shows that the proportional coefficient, i.e., $\beta$, is linear with ${R_i}/\lambda$ for an arbitrary LPVMIRD; thus, the normalized $\beta$ versus wavelength yields the same curve as the normalized ${R_i}/\lambda$ versus wavelength. All units exhibit almost identical normalized $\beta$ versus wavelength response because of their similar responsivity curves. Figure 2(e) displays the normalized $\beta$ versus wavelength response of unit #2-2, where ${\lambda _0}$ is the same as in Fig. 2(a). It is clearly observed that $\beta$ declines steadily as the wavelength increases. This phenomenon is explained as follows. As described for the working principle of the LPVMIRDs, the LPVs arise from the movement of the photo-generated electrons in the PbTe layer into the 2DEG channel. We assume that there is a fixed effective absorption length (EAL) spanning vertically from the interface channel to the PbTe layer for the entire response range, where the photo-generated electrons are capable of reaching the channel before being recombined and contributing to the LPVs. The absorption coefficient of PbTe declines as the wavelength increases within the response range [29]; thus, the shorter the wavelength of the incident infrared photons, the more photo-generated electrons are obtained within an EAL. Thus, the relationship between $\beta$ and the wavelength shown in Fig. 2(e) can be clearly understood. In fact, $\beta$ is also supposed to be proportional to the quantum efficiency of the LPVMIRDs referred to in Eq. (A4), indicating that the quantum efficiency also decreases with increasing wavelength.

To attain the response time of the LPVMIRDs, the impulse responses were measured using the fs-pulse laser. Figure 3(a) displays the normalized impulse responses of all units, which were irradiated by infrared beams with a wavelength of 3 µm and a power of ${15}\;{{\rm mW/cm}^2}$. It is observed that the response times (the rise and fall times) of all units are almost identical, implying that the response speed is independent of the dimensional parameters for the LPVMIRDs. This phenomenon conforms to the description above that the response speed is determined by the transit time of the photo-generated electrons from the PbTe layer into the channel because electrons in the 2DEG channel have high mobility. The impulse response of unit #3-2 in Fig. 3(a) is magnified and shown in Fig. 3(b), where the rise and fall times are measured as 4 and 52 ns, respectively. Thus, the rise and fall times correspond to the impulse responses, i.e., the rise from 10%–90% and fall from 90%–10%. As evidenced by the long tail in the falling process, the fall time is much longer than the rise time, which is attributed to the long lifetime of the excess electrons in the 2DEG channel [26,30]. In Fig. 3(b), the falling process is fitted exponentially using the equation ${Y} = A{\rm exp}(- t/{t_0}) + {y_0}$, where $A$, ${t_0}$, and ${y_0}$ are fitting constants. The fitting constant ${t_0}$ is ${\sim}{23}\;{\rm ns}$ and represents the lifetime of the excess electrons in the 2DEG channel, which is much longer than that of the modulation-doped GaAs/AlGaAs HJ reported in Ref. [27]. The long lifetime is explained by the following two reasons: i) in the formation of the 2DEG in the CdTe/PbTe HJ (which is an intrinsic polar interface effect), no ionized impurities (without intentional doping) are present to facilitate the recombination of the electrons in the channel [25]; ii) the excess holes in the PbTe layer are blocked by the large VBO, further declining the recombination rate of the electrons. According to Eqs. (A9)–(A11) (see Appendix A), the long lifetime contributes greatly to the performances of the LPVMIRDs, as demonstrated by the high responsivities obtained as shown in Fig. 2(a). The impulse responses of unit #3-2 were also measured using infrared beams with different wavelengths but a similar power, which are displayed in Fig. 3(c). It is observed that the response speed remains largely invariant to wavelength variation.

 

Fig. 3. (a) Normalized impulse responses of all units at 3 µm. (b) Magnified impulse response and corresponding fitting curve for the falling process of unit #3-2 at 3 µm, where the rise and fall times are 4 and 52 ns, respectively. These rise and fall times represent the time taken for an impulse response to rise from 10%–90%, and fall from 90%–10%. (c) Normalized responses of unit #3-2 at different wavelengths. The fill patterns in (a) and (c) cover the processes of the ${10}\% \sim{90}\%$ rise and ${90}\% \sim{10}\%$ fall.

Download Full Size | PPT Slide | PDF

The rise times (${10}\% \sim{90}\%$) [31] of the DHPCA-100 amplifier (bandwidth, 80 MHz) and the TBS 1052B oscilloscope (bandwidth, 50 MHz) are 4.4 and 7 ns, respectively, which are on the same order of magnitude as the measured rise time of the LPVMIRDs. As a result, the measured rise time is possibly limited by the measurement setup. The rise time of the LPVMIRDs was estimated using Eq. (2) [32]:

$${t_{{\rm rise}}} = \frac{{d_{{\rm eff}}^2q}}{{kT{\mu _{e (\rm PbTe)}}}},$$
where ${d_{{\rm eff}}}$ is the thickness of the EAL, ${\mu _e{(\rm PbTe)}}$ is the electron mobility in the PbTe layer, and $k$, $T$, and $q$ have the same meanings as in Eq. (A5). The as-grown 1 µm thick PbTe layer is a ${p}$-type semiconductor with a hole mobility of ${500}\;{{\rm cm}^2}/{\rm V}\;{\cdot}\;{\rm s}$. If they are represented as ${d_{{\rm eff}}}$ and ${\mu _{e(\rm PbTe)}}$, respectively, the rise time is calculated to be ${\sim}\;{0.77}\;{\rm ns}$, which is much shorter than the measured one. Indeed, the calculated rise time is modest because the hole mobility should be lower than ${\mu _{e(\rm PbTe)}}$. This ultrafast rise leads to few photo-generated electrons being recombined in the PbTe layer, thereby restraining the generation-recombination noise of the LPVMIRDs. The rise time of the LPVMIRDs is much shorter than that of Ge and Si drift detectors, i.e., 130 and 80 ns [33,34], respectively, which are widely applied for scintillation detection. Moreover, such a short rise time also has potential for measurements requiring a high count rate [35]. Table 2 lists the comparative performances of several uncooled MIR detectors. It is clear that the LPVMIRDs outperform the alternative detectors with respect to both detectivity and response time. These outstanding performances indicate that the emerging detectors hold immense promise for uncooled MIR detection. Furthermore, this type of detector possesses ultra-high response speeds and works without any external bias; therefore, it could find further application in the fabrication of high-density focal plane array detectors for infrared imaging.
Tables Icon

Table 2. Performances of Different Types of RT MIR Photodetectors

In order to explore the impact of the incident power on the response of the LPVMIRDs, the CW-laser responses of group 3 were measured using different laser powers. As shown in Figs. 4(a) and 4(b), the photocurrents and the LPVs of all measured units increase with the laser power. In addition, the detailed photocurrent versus laser power is displayed in Fig. 4(c), demonstrating clearly that, with the enhancement of the laser power, the increase rate of the photocurrent is consistent initially, before gradually declining. For photon detectors, the photocurrent arises from the transition of electrons from the valence band to conduction band initiated by absorbing incident photons. When the incident light power is strengthened, a higher density is required for the unoccupied states in the conduction band. However, the density of the unoccupied states is limited, such that when incident light power is sufficiently intense, a proportion of the photons would not be absorbed owing to the lack of unoccupied states. In this case, the photocurrent tends to become saturated (i.e., the responsivity decreases), as shown in Figs. 4(c) and 4(d). Figure 4(d) shows the corresponding responsivity versus laser power for which the responsivities of the three units under all laser powers conform primarily to the relationship displayed in Fig. 2(b). It is observed that all responsivities are almost invariant when the laser power is below ${70.9}\;{{\rm mW/cm}^2}$; however, they gradually decline as the laser power increases above this threshold. This behavior is hypothesized as follows: when the power of the incident infrared radiation is below ${70.9}\;{{\rm mW/cm}^2}$, the quantity of the photo-generated carriers in the PbTe layer is sufficiently small that they have no impact on the recombination rate of the excess electrons. Thus, $\beta$ is independent of the infrared power and, according to Eq. (A11), the responsivity is invariant. When the infrared power is increased further, the quantity of the excess carriers becomes significant, and the recombination rate of the excess electrons increases, which leads to ${d_{{\rm eff}}}$ becoming thinner. In this situation, $\beta$ naturally decreases, thereby causing the responsivity to decrease, as shown in Fig. 4(d).

 

Fig. 4. CW laser responses for the (a) photocurrent and (b) in the LPV of group 3 measured for different laser powers. (c) Photocurrent versus the laser power obtained from (a). (d) Responsivity versus the laser power obtained from (a). (e) CW laser responses of unit #3-2 at different temperatures. In (a) and (e), one period (2.5 ms) of the measured time-traced responses was selected for each laser power and temperature, then these periods were spliced in order. (f) Responsivity and LPV versus temperature obtained from (e).

Download Full Size | PPT Slide | PDF

In addition, the laser responses of unit #3-2 were measured using a laser power of ${23.3}\;{{\rm mW/cm}^2}$ under varying temperatures but in the near-RT regime. The corresponding result is displayed in Fig. 4(e). Meanwhile, the resistance versus temperature of unit #3-2 was also measured (see Fig. S5, Supplement 1). The measurements of photocurrent and LPV versus temperature are shown in Fig. 4(f), for which the LPV is obtained by Eq. (1). As the operating temperature declines, the resistance decreases slowly, whereas the photocurrent increases relatively sharply. Consequently, the slopes of the photocurrent and LPV versus temperature data are similar irrespective of the temperature, as displayed in Fig. 4(f). This implies that the increase in the measured photocurrent is due mainly to the LPV instead of the resistance. As the temperature lessens, the quantity of the electron–hole pairs generated by thermal excitation in the PbTe layer is reduced, thus diminishing the recombination rate of the excess electrons. Therefore, $\beta$ increases, with the LPV increasing according to Eq. (A9). The responsivity at 251.5 K reaches 0.98 A/W (approximately twofold that of at RT), which exceeds the theoretical limit for this wavelength. Hence, a gain exists in the response of the LPVMIRDs. This gain may arise principally from the long excess electron lifetime in the 2DEG channel referred to in Eq. (A11). In detail, the long excess lifetime in the 2DEG channel results in the number of injected electrons from the external circuit being larger than that of electrons photo-generated directly in the PbTe layer [26,41]. For the laser response measurements produced using a power of ${23.3}\;{{\rm mW/cm}^2}$, the detectivity at 251.5 K is 2.3 times greater than that at RT according to Eq. (A12), demonstrating that thermoelectric cooling is a suitable method for improving the LPVMIRD sensitivity.

4. CONCLUSION

In conclusion, an emerging type of uncooled MIR detector, i.e., LPVMIRD, was proposed based on novel CdTe/PbTe HJs with 2DEG. Referring to the working principle of the detectors, an analytical model was developed to evaluate the performances of the LPVMIRDs. Three groups of LPVMIRDs were fabricated with different dimensional parameters but similar asymmetric structures. The photoresponse spectra were all cut off at approximately 4 µm and, owing to a unique device mechanism, their curves were different from bulk PbTe detectors. In the measured impulse responses, all the detector units demonstrated an extraordinarily short rise time of 4 ns, with a longer fall time of 52 ns attributed to the long excess electron lifetime in the 2DEG channel. This long lifetime contributed greatly to realizing the high sensitivity of the LPVMIRDs. Among all the fabricated units, unit #3-2 demonstrated the highest detectivity at 3 µm of ${1.5} \times {{10}^{10}}$ Jones. Furthermore, it was found that, by decreasing the infrared power or the operating temperature, the device sensitivity increased in the measured power or temperature ranges. The LPVMIRDs offer performance advantages when compared with other uncooled MIR detectors, and thus this emerging type of detector has considerable potential for application in uncooled MIR imaging systems. Moreover, the proposed analytical model is also appropriate for other 2DEG material systems.

APPENDIX A

Based on the description for the working principle of the LPVMIRDs, the behavior and distribution of electrons in the 2DEG channel can be obtained from the solution to the continuity and Poisson equations. Further, the LPV and the performance of the LPVMIRDs can be calculated.

For the devices proposed herein, it is reasonable to consider the one-dimensional forms of the continuity and Poisson equations. As shown in Fig. 1(b), a one-dimensional coordinated system ($x$ axial) along the direction from S to D is established, where the SR-AR boundary is set as the origin. The length of the AR and the SR are ${L_a}$ and ${L_s}\!$, respectively, and both have a width of $W$. The continuity equation for the electrons in the 2DEG channel in $x$ axial is

$$\frac{\partial}{{\partial x}}\left({n(x ){\mu _e}\!E(x ) + {D_e}\frac{{\partial n(x )}}{{\partial x}}} \right) - \frac{{\Delta n(x )}}{{{\tau _e}}} + G = 0,$$
and the Poisson equation for the electrons in the 2DEG channel is
$$\frac{{\partial\! E(x )}}{{\partial x}} = - q\frac{{\Delta n(x )}}{\varepsilon}.$$
In Eqs. (A1) and (A2), ${\mu _e}$ is the electron mobility, ${D_e}$ is the diffusion coefficient, ${\tau _e}$ is the excess electron lifetime, $\varepsilon$ is the permittivity of the 2DEG channel, $E$ is the electric field intensity, $q$ is the electric charge, and $n(x) = {n_0} + \Delta n(x)$ is the total electron density in the channel [${n_0}$ and $\Delta n(x)$ are the intrinsic and excess electron densities, respectively, and ${n_0} \gg \Delta n(x)$]. Furthermore, $G$ is the generation rate of the electrons diffusing from PbTe into the 2DEG channel and can be expressed as
$$G = \left\{{\begin{array}{*{20}{l}}{{G_0}}&\quad{({- {L_a} \le x \lt 0} )}\\0&\quad{({0 \le x \lt {L_s}} )}\end{array}} \right.\!.$$
Here, ${G_0}$ is proportional to $\Phi /d$, where $\Phi$ is the incident photon-flux density, and $d$ is the thickness of the 2DEG channel. Thus, ${G_0}$ is expressed as
$${G_0} = \frac{{\beta \Phi}}{d},$$
where $\beta$ is the proportional coefficient.

Generally, the equations should be solved with appropriate boundary conditions. It is difficult to solve them exactly, and they are usually solved via various approximation schemes [42]. Here, the distribution of the excess electrons in the channel can be estimated using the assumption that an exponential tail represents the diffusion of electrons from the AR to the SR or ${S}$. The exponential tail has a decay length equal to the diffusion length of the electrons in the channel [42], which can be calculated by

$${L_e} = \sqrt {{D_e}{\tau _e}} = \sqrt {\frac{{kT}}{q}{\mu _e}{\tau _e}} ,$$
where $k$ is Boltzmann’s constant, and $T$ is the temperature. In this study, the case for which ${L_e}\; \ll \;{L_a}$ and ${L_s}$ is analyzed. Therefore, the distribution of the excess electrons in the channel is expressed as
$$\begin{split}\Delta n(x ) = \left\{{\begin{array}{*{20}{l}}{{G_0}{\tau _e}\exp \left({\frac{{x - {L_e} + {L_a}}}{{{L_e}}}} \right)}&{({- {L_a} \le x \lt {L_e} - {L_a}} )}\\{{G_0}{\tau _e}}&{({{L_e} - {L_a} \le x \lt - {L_e}} )}\\{{G_0}{\tau _e}\exp \left({- \frac{{x + {L_e}}}{{{L_e}}}} \right)}&{({- {L_e} \le x \lt {L_s}} )}\end{array}} \right..\end{split}$$
Then, referring to Eqs. (A2) and (A6), the electric field intensity is obtained:
$$E(x ) = \left\{{\begin{array}{*{20}{l}}{- \frac{\textit{q}}{\varepsilon}\left[{{n_0}x + {G_0}{\tau _e}{L_e}\exp \left({\frac{{x - {L_e} + {L_a}}}{{{L_e}}}} \right)} \right] + {E_1}}&{({- {L_a} \le x \lt {L_e} - {L_a}} )}\\[4pt]{- \frac{\textit{q}}{\varepsilon}({{n_0} + {G_0}{\tau _e}} )x + {E_2}}&{({{L_e} - {L_a} \le x \lt - {L_e}} )}\\[4pt]{- \frac{\textit{q}}{\varepsilon}\left[{{n_0}x - {G_0}{\tau _e}{L_e}\exp \left({- \frac{{x + {L_e}}}{{{L_e}}}} \right)} \right] + {E_3}}&{({- {L_e} \le x \lt {L_s}} \!)}\end{array},} \right.$$
in which ${E_1}$, ${E_2}$, and ${E_3}$ are integration constants. As the intrinsic electron density in the channel is much higher than the excess electron density, i.e., ${n_0}\; \gg \;\Delta n(x)$, the electric field intensity at $x = ({L_s} - {L_a})/{2}$ is zero. By applying the above condition alongside two further conditions, namely, $E{({L_e} - {L_a})^ -} = E{({L_e} - {L_a})^ +}$ and $E{(- {L_e})^ -} = E{(- {L_e})^ +}$, the three integration constants are obtained. Therefore, the LPV is expressed as
$${\rm LPV} = {V_{\textit{DS}}} = \int_{- {L_a}}^{{L_s}} {E(x ){\rm d}x} ,$$
with the calculated result given as
$${\rm LPV}= {V_{\textit{DS}}} = \left\{{\begin{array}{*{20}{l}}{\frac{{\textit{q}\beta \Phi {\tau _e}{L_a}{L_s}}}{{2\varepsilon d}}}&{({{L_a} \gt {L_s}} \!)}\\[4pt]{\frac{{q\beta \Phi {\tau _e}L_a^2}}{{2\varepsilon d}}}&{({{L_a} \le {L_s}} \!)}\end{array}} \right..$$
It is known that the incident photon-flux density $\Phi$ and the infrared power per unit area ${P_0}$ are related via $\Phi = {P_0}\lambda /(hc)$, where $h$ is Planck’s constant, $c$ is the speed of light, and $\lambda$ is the wavelength of the incident infrared. The resistance of the 2DEG channel is $R = ({L_a} + {L_s})/({n_0}q{\mu _e}dW)$. Thus, the photocurrent and current responsivity (when the external circuit is short-circuited, i.e., the load resistance between ${S}$ and ${D}$ is limited to be zero) are expressed as
$${I_p} = \frac{{{V_{\textit{DS}}}}}{R} = \left\{{\begin{array}{*{20}{l}}{\frac{{{n_0}{\textit{q}^2}{\mu _e}{\tau _e}\beta \lambda {P_0}W{L_a}{L_s}}}{{2\varepsilon hc{L_{a + s}}}}}&{({{L_a} \gt {L_s}} )}\\[6pt]{\frac{{{n_0}{\textit{q}^2}{\mu _e}{\tau _e}\beta \lambda {P_0}WL_a^2}}{{2\varepsilon hc{L_{a + s}}}}}&{({{L_a} \le {L_s}} )}\end{array}} \right.,$$
and
$${R_i} = \frac{{{I_p}}}{{{P_0}{A_d}}} = \left\{{\begin{array}{*{20}{l}}{\frac{{{n_0}{\textit{q}^2}{\mu _e}{\tau _e}\beta \lambda}}{{2\varepsilon hc({1 + {{{L_a}} / {{L_s}}}} \!)}}}&{({{L_a} \gt {L_s}}\! )}\\[6pt]{\frac{{{n_0}{\textit{q}^2}{\mu _e}{\tau _e}\beta \lambda}}{{2\varepsilon hc({1 + {{{L_s}} / {{L_a}}}} )}}}&{({{L_a} \le {L_s}} \!)}\end{array}} \right.,$$
where ${A_d} = {L_a}W$ is the area of the AR. Because there is no external bias when the LPVMIRDs work, the dark current is far lower than the photocurrent, such that the total shot noise can be expressed as $I_{n(s)}^2 = 2q{I_p}{\Delta}\!f$, where ${\Delta}\!f$ is the signal bandwidth [43,44]. The thermal noise (i.e., Johnson–Nyquist noise) is $I_{n(t)}^2 = 4kT \Delta\! f\!/\!R$. In the response spectrum measurements, the highest photocurrent obtained was 10.4 nA by unit #3-2, for which $I_{n(t)}^2 \approx {4} \times {{10}^3}$$I_{n(s\!)}^2$ at RT. Therefore, the thermal noise is the dominating noise as in photoelectromagnetic detectors and Dember detectors [45]. Then, the detectivity is calculated as
$$D_\lambda ^* = \frac{{{R_i}{{({{A_d}\Delta f} )}^{1/2}}}}{{{{({{{4kT\Delta\! f}\! /\! R}} )}^{1/2}}}},$$
where the denominator term represents the effect of the thermal noise.

Funding

Sino-German Science Center (GZ 1580); National Natural Science Foundation of China (11933006, U1737109).

Acknowledgment

The fabrication of the devices was performed at the Micro-Nano Processing Platform, Institute of Microelectronics and Nanoelectronics, Zhejiang University.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES

1. Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008). [CrossRef]  

2. H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005). [CrossRef]  

3. Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002). [CrossRef]  

4. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006). [CrossRef]  

5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009). [CrossRef]  

6. A. Rogalski, “Third-generation infrared photon detectors,” Opt. Eng. 42, 3498–3516 (2003). [CrossRef]  

7. M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998). [CrossRef]  

8. W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014). [CrossRef]  

9. A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016). [CrossRef]  

10. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003). [CrossRef]  

11. Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009). [CrossRef]  

12. A. Rogalski, “Recent progress in third generation infrared detectors,”J. Mod. Opt. 57, 1716–1730 (2010). [CrossRef]  

13. A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE 3182, 280417 (1997). [CrossRef]  

14. Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016). [CrossRef]  

15. Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015). [CrossRef]  

16. Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013). [CrossRef]  

17. M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003). [CrossRef]  

18. T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004). [CrossRef]  

19. M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001). [CrossRef]  

20. R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).

21. H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002). [CrossRef]  

22. C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012). [CrossRef]  

23. S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013). [CrossRef]  

24. B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014). [CrossRef]  

25. B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015). [CrossRef]  

26. M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996). [CrossRef]  

27. C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983). [CrossRef]  

28. X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019). [CrossRef]  

29. S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993). [CrossRef]  

30. D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009). [CrossRef]  

31. D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated (McGraw-Hill, 1968).

32. G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008). [CrossRef]  

33. M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993). [CrossRef]  

34. C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004). [CrossRef]  

35. I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007). [CrossRef]  

36. “2020 VIGO system infrared detectors,” http://vigo.com.pl/en.

37. K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017). [CrossRef]  

38. 2020 HAMAMATSU Photonics, https://www.hamamatsu.com.

39. 2020 CalSensors, Inc., https://optodiode.com.

40. 2020 Thorlabs, Inc., https://www.thorlabschina.cn.

41. B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

42. A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002). [CrossRef]  

43. M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999). [CrossRef]  

44. W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926). [CrossRef]  

45. J. F. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007), pp. 179–196.

References

  • View by:
  • |
  • |
  • |

  1. Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
    [Crossref]
  2. H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
    [Crossref]
  3. Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
    [Crossref]
  4. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
    [Crossref]
  5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
    [Crossref]
  6. A. Rogalski, “Third-generation infrared photon detectors,” Opt. Eng. 42, 3498–3516 (2003).
    [Crossref]
  7. M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
    [Crossref]
  8. W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
    [Crossref]
  9. A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
    [Crossref]
  10. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
    [Crossref]
  11. Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
    [Crossref]
  12. A. Rogalski, “Recent progress in third generation infrared detectors,”J. Mod. Opt. 57, 1716–1730 (2010).
    [Crossref]
  13. A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE 3182, 280417 (1997).
    [Crossref]
  14. Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
    [Crossref]
  15. Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
    [Crossref]
  16. Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
    [Crossref]
  17. M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
    [Crossref]
  18. T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
    [Crossref]
  19. M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001).
    [Crossref]
  20. R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).
  21. H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
    [Crossref]
  22. C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
    [Crossref]
  23. S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
    [Crossref]
  24. B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
    [Crossref]
  25. B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
    [Crossref]
  26. M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
    [Crossref]
  27. C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
    [Crossref]
  28. X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
    [Crossref]
  29. S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
    [Crossref]
  30. D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
    [Crossref]
  31. D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated (McGraw-Hill, 1968).
  32. G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
    [Crossref]
  33. M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993).
    [Crossref]
  34. C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
    [Crossref]
  35. I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
    [Crossref]
  36. “2020 VIGO system infrared detectors,” http://vigo.com.pl/en .
  37. K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017).
    [Crossref]
  38. 2020 HAMAMATSU Photonics, https://www.hamamatsu.com .
  39. 2020 CalSensors, Inc., https://optodiode.com .
  40. 2020 Thorlabs, Inc., https://www.thorlabschina.cn .
  41. B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.
  42. A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002).
    [Crossref]
  43. M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
    [Crossref]
  44. W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926).
    [Crossref]
  45. J. F. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007), pp. 179–196.

2019 (1)

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

2017 (1)

K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017).
[Crossref]

2016 (2)

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

2015 (2)

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

2014 (2)

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

2013 (2)

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

2012 (1)

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

2010 (1)

A. Rogalski, “Recent progress in third generation infrared detectors,”J. Mod. Opt. 57, 1716–1730 (2010).
[Crossref]

2009 (3)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

2008 (2)

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
[Crossref]

2007 (1)

I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
[Crossref]

2006 (1)

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

2005 (1)

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

2004 (2)

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

2003 (3)

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

A. Rogalski, “Third-generation infrared photon detectors,” Opt. Eng. 42, 3498–3516 (2003).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

2002 (3)

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002).
[Crossref]

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

2001 (1)

M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001).
[Crossref]

1999 (1)

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

1998 (1)

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

1997 (2)

R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).

A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE 3182, 280417 (1997).
[Crossref]

1996 (1)

M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
[Crossref]

1993 (2)

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993).
[Crossref]

1983 (1)

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

1926 (1)

W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926).
[Crossref]

Agarwal, S. C.

A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002).
[Crossref]

Alchalabi, K.

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

Almazan, R.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

Balakirev, F. F.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Bao, X.

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

Bauer, G.

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

Beck, W.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Beck, W. A.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Beekman, D. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Belove, C.

D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated (McGraw-Hill, 1968).

Bethea, C. G.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Beystrum, T.

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

Bi, G.

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

Brown, G. J.

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

Brudnowski, M.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Cai, C.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Catalan, I.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Cesareo, M.

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

Chamonal, J. P.

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

Chen, C. Y.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Chen, X.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Chen, Y.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Cheng, X.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Cho, A. Y.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Christol, P.

Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
[Crossref]

Ciupa, R.

R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).

Clark, W. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Cola, A.

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

Cuminal, Y.

Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
[Crossref]

Destefanis, G.

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

Dhar, N. K.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Diezhandino, J.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Dyer, W. R.

M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001).
[Crossref]

El-Arabi, A.

M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993).
[Crossref]

El-Wahab, M. A.

M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993).
[Crossref]

Faist, J.

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

Fiorini, C.

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Fisher, A. M.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Garbinski, P. A.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Gawron, W.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Gin, A.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

Giovannini, M.

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

Gola, A.

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Goldberg, A. C.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Gomez, L. J.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Graf, M.

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

Gunapala, S. D.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Hackiewicz, K.

K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017).
[Crossref]

Haugan, H. J.

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

He, J.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Herczfeld, P. R.

M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
[Crossref]

Hill, C. J.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Himoto, R.

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

Hishiki, S.

I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
[Crossref]

Hoffman, R.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Hofstetter, D.

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

Hoglund, L.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Hou, Z.

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Hoyler, N.

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

Hu, L.

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Hu, W.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Huang, Y.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Jacksen, N.

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

Jaime, M.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Jiang, C.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Jiang, P.

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

Jiao, L.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Jin, S.

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Kanno, I.

I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
[Crossref]

Kellermann, K.

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

Kennerly, S. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Keo, S. A.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Kogetsu, Y.

I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
[Crossref]

Kong, W.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Krenn, H.

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

Leavitt, R. P.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Levine, B. F.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Li, J.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Li, M.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Li, R.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Lin, T.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Little, J. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Liu, F.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Liu, H.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Liu, K.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Liu, Q.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Longoni, A.

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Lu, P.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Lu, W.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Lu, X.

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

Lv, Y.

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Mahalingam, K.

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

Martinez, M. A. G.

M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
[Crossref]

Martyniuk, P.

K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017).
[Crossref]

McCann, P. J.

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Montojo, M. T.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Mumolo, J. M.

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Munshi, S. R.

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

Nabet, B.

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

Nguyen, J.

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Orman, Z.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Paliwoda, R.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Pan, W.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Pang, Y. M.

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

Pawluczyk, J.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Pedzinska, M.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Perotti, F.

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Perrais, G.

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

Piotrowski, A.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Piotrowski, J.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Piotrowski, J. F.

J. F. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007), pp. 179–196.

Plaza, J.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Pollehn, H.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Pollehn, H. K.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Qiu, W.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Quaranta, F.

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

Razeghi, M.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

Robertson, D. N.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Rodrigo, M. T.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Rodriguez, J. B.

Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
[Crossref]

Rodriguez, P.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Rogalski, A.

A. Rogalski, “Recent progress in third generation infrared detectors,”J. Mod. Opt. 57, 1716–1730 (2010).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

A. Rogalski, “Third-generation infrared photon detectors,” Opt. Eng. 42, 3498–3516 (2003).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE 3182, 280417 (1997).
[Crossref]

R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).

J. F. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007), pp. 179–196.

Romero, M. A.

M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
[Crossref]

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

Rothman, J.

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

Sanchez, F. J.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Schilling, D. L.

D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated (McGraw-Hill, 1968).

Schottky, W.

W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926).
[Crossref]

Shifa, T. A.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Si, J.

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Soibel, A.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Springholz, G.

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

Srivastava, A.

A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002).
[Crossref]

Stanaszek, D.

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

Struder, L.

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Sun, L.

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

Sutton, M.

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

Szmulowicz, F.

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

Tidrow, M. Z.

M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001).
[Crossref]

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Tidrow, S. C.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Ting, D. Z.

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Ting, Z. Y.

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Tipton, W.

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

Torquemada, M. C.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Verdu, M.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Vergara, G.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Villamayor, V.

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

Wang, F.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Wang, J.

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Wang, Q.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Wang, R.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Wang, W.

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

Wang, Z.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Wei, Y.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

Wen, Y.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Wu, F.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Wu, H.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Xiong, J.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Xu, K.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Yao, F.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Yao, W.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Ye, Z.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Yin, F.

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

Yin, L.

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

Yuan, H.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Yuan, S.

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

Zhan, X.

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Zhang, B.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

Zhang, Y.

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

Zhu, H.

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

Zimin, D.

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

Zogg, H.

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

Adv. Mater. (2)

Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, and J. He, “Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response,” Adv. Mater. 28, 8051–8057 (2016).
[Crossref]

X. Lu, L. Sun, P. Jiang, and X. Bao, “Progress of photodetectors based on the photothermoelectric effect,” Adv. Mater. 31, 1902044 (2019).
[Crossref]

Appl. Phys. Lett. (9)

C. Cai, S. Jin, H. Wu, B. Zhang, L. Hu, and P. J. McCann, “Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions,” Appl. Phys. Lett. 100, 182104 (2012).
[Crossref]

B. Zhang, C. Cai, H. Zhu, F. Wu, Z. Ye, Y. Chen, R. Li, W. Kong, and H. Wu, “Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions,” Appl. Phys. Lett. 104, 161601 (2014).
[Crossref]

C. Y. Chen, A. Y. Cho, C. G. Bethea, P. A. Garbinski, Y. M. Pang, and B. F. Levine, “Ultrahigh speed modulation-doped heterostructure field-effect photodetectors,” Appl. Phys. Lett. 42, 1040–1042 (1983).
[Crossref]

H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, and S. R. Munshi, “Short-period InAs/GaSb type-II superlattices for mid-infrared detectors,” Appl. Phys. Lett. 87, 261106 (2005).
[Crossref]

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Appl. Phys. Lett. 80, 3262–3264 (2002).
[Crossref]

M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared,” Appl. Phys. Lett. 88, 241118 (2006).
[Crossref]

W. Qiu, W. Hu, T. Lin, X. Cheng, R. Wang, F. Yin, B. Zhang, X. Chen, and W. Lu, “Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope,” Appl. Phys. Lett. 105, 181104 (2014).
[Crossref]

A. Soibel, D. Z. Ting, C. J. Hill, A. M. Fisher, L. Hoglund, S. A. Keo, and S. D. Gunapala, “Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength,” Appl. Phys. Lett. 109, 103505 (2016).
[Crossref]

Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95, 23508 (2009).
[Crossref]

Finite Elem. Anal. Des. (1)

Y. Cuminal, J. B. Rodriguez, and P. Christol, “Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation,” Finite Elem. Anal. Des. 44, 611–616 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. A. Romero, M. A. G. Martinez, and P. R. Herczfeld, “An analytical model for the photodetection mechanisms in high-electron mobility transistors,” IEEE Trans. Microw. Theory Tech. 44, 2279–2287 (1996).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

M. A. El-Wahab and A. El-Arabi, “Analytical study of amplitude rise time compensated timing with coaxial Ge(Li) detectors,” IEEE Trans. Nucl. Sci. 40, 147–152 (1993).
[Crossref]

C. Fiorini, A. Gola, A. Longoni, F. Perotti, and L. Struder, “Timing properties of silicon drift detectors for scintillation detection,” IEEE Trans. Nucl. Sci. 51, 1091–1097 (2004).
[Crossref]

Infrared Phys. Technol. (3)

H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Lead chalcogenide on silicon infrared sensors: focal plane array with 96×128 pixels on active Si-chip,” Infrared Phys. Technol. 43, 251–255 (2002).
[Crossref]

M. T. Rodrigo, M. T. Rodrigo, F. J. Sanchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdu, L. J. Gomez, J. Diezhandino, R. Almazan, P. Rodriguez, J. Plaza, I. Catalan, and M. T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44, 281–287 (2003).
[Crossref]

M. Z. Tidrow and W. R. Dyer, “Infrared sensors for ballistic missile defense,” Infrared Phys. Technol. 42, 333–336 (2001).
[Crossref]

J. Appl. Phys. (2)

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

J. Electron. Mater. (1)

G. Perrais, J. Rothman, G. Destefanis, and J. P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37, 1261–1273 (2008).
[Crossref]

J. Mod. Opt. (1)

A. Rogalski, “Recent progress in third generation infrared detectors,”J. Mod. Opt. 57, 1716–1730 (2010).
[Crossref]

Nano Lett. (1)

B. Zhang, P. Lu, H. Liu, L. Jiao, Z. Ye, M. Jaime, F. F. Balakirev, H. Yuan, H. Wu, W. Pan, and Y. Zhang, “Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures,” Nano Lett. 15, 4381–4386 (2015).
[Crossref]

Opt. Eng. (1)

A. Rogalski, “Third-generation infrared photon detectors,” Opt. Eng. 42, 3498–3516 (2003).
[Crossref]

Opto-Electron. Rev. (1)

R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal infrared detectors,” Opto-Electron. Rev. 4, 257–266 (1997).

Philos. Mag. B (1)

A. Srivastava and S. C. Agarwal, “Potential fluctuations, diffusion length and lateral photovoltage in hydrogenated amorphous silicon and silicon–germanium thin films,” Philos. Mag. B 82(11), 1239–1256 (2002).
[Crossref]

Phys. Rev. (1)

W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926).
[Crossref]

Phys. Rev. B (2)

S. Jin, C. Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, “Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions,” Phys. Rev. B 87, 235315 (2013).
[Crossref]

S. Yuan, H. Krenn, G. Springholz, and G. Bauer, “Dispersion of absorption and refractive index of PbTe and Pb1-xEuxTe (<0.05) below and above the fundamental gap,” Phys. Rev. B 47, 7213–7226 (1993).
[Crossref]

Proc. SPIE (7)

D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk, and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements,” Proc. SPIE 7482, 74820M (2009).
[Crossref]

T. Beystrum, R. Himoto, N. Jacksen, and M. Sutton, “Low-cost PbSalt FPAs,” Proc. SPIE 5406, 287–294 (2004).
[Crossref]

Z. Hou, J. Si, W. Wang, Y. Lv, J. Wang, and X. Chen, “Fabrication and performance of 1 × 128 linear PbS infrared focal plane array,” Proc. SPIE 8907, 890724 (2013).
[Crossref]

M. Z. Tidrow, W. W. Clark, W. Tipton, R. Hoffman, W. Beck, S. C. Tidrow, D. N. Robertson, and H. Pollehn, “Uncooled infrared detectors and focal plane arrays,” Proc. SPIE 3553, 177–187 (1998).
[Crossref]

A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE 3182, 280417 (1997).
[Crossref]

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, and A. C. Goldberg, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

K. Hackiewicz and P. Martyniuk, “Interband cascade type-II infrared InAs/GaSb-current status and future trends,” Proc. SPIE 10433, 104330X (2017).
[Crossref]

Rev. Sci. Instrum. (1)

I. Kanno, S. Hishiki, and Y. Kogetsu, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum. 78, 056103 (2007).
[Crossref]

Small (1)

Q. Wang, W. Yao, F. Yao, Y. Huang, Z. Wang, M. Li, X. Zhan, K. Xu, F. Wang, F. Wang, J. Li, K. Liu, C. Jiang, F. Liu, and J. He, “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 5388–5394 (2015).
[Crossref]

Other (7)

“2020 VIGO system infrared detectors,” http://vigo.com.pl/en .

D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated (McGraw-Hill, 1968).

2020 HAMAMATSU Photonics, https://www.hamamatsu.com .

2020 CalSensors, Inc., https://optodiode.com .

2020 Thorlabs, Inc., https://www.thorlabschina.cn .

B. Nabet, M. A. Romero, A. Cola, F. Quaranta, and M. Cesareo, “On optical gain mechanisms in a 2DEG photodetector,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (2001), pp. 57–60.

J. F. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007), pp. 179–196.

Supplementary Material (1)

NameDescription
» Supplement 1       Supporting Information for measurement setups and some other mentioned results

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of a LPVMIRD based on a CdTe/PbTe HJ with 2DEG, inset: a cross-sectional SEM image of the HJ. (b) Top view of the LPVMIRD with dimensional parameters. (c) Energy band profile of the CdTe/PbTe HJ where black balls, red solid, and hollow circles represent the electrons of the 2DEG, the photo-generated electrons, and holes in PbTe, respectively; CB and VB represent the conduction and valance bands, respectively.
Fig. 2.
Fig. 2. (a) Infrared response spectra of the fabricated LPVMIRDs. (b) ${R_i}/{R_i}({\rm max})$ at 3 µm versus ${L_a}/{L_{a + s}}$ obtained from both calculations and experiments, where ${R_i}({\rm max})$ is the maximum responsivity in the respective group. (c) ${V_{\textit{DS}}}/{V_{\textit{DS}}}({\rm max})$ at 3 µm versus $L_{a + s}^2$ obtained from both calculations and experiments, where ${V_{\textit{DS}}}({\rm max})$ is the LPV of the detectors in group 3 (they exhibit the largest ${L_{a + s}}$ among the three groups). In (b) and (c), the positions of the vertical dashed lines represent the calculated values for the fabricated LPVMIRDs. (d) I-V curves of #X-2 (units #1-2, #2-2, and #3-2). (e) Normalized $\beta$ versus wavelength of unit #2-2.
Fig. 3.
Fig. 3. (a) Normalized impulse responses of all units at 3 µm. (b) Magnified impulse response and corresponding fitting curve for the falling process of unit #3-2 at 3 µm, where the rise and fall times are 4 and 52 ns, respectively. These rise and fall times represent the time taken for an impulse response to rise from 10%–90%, and fall from 90%–10%. (c) Normalized responses of unit #3-2 at different wavelengths. The fill patterns in (a) and (c) cover the processes of the ${10}\% \sim{90}\%$ rise and ${90}\% \sim{10}\%$ fall.
Fig. 4.
Fig. 4. CW laser responses for the (a) photocurrent and (b) in the LPV of group 3 measured for different laser powers. (c) Photocurrent versus the laser power obtained from (a). (d) Responsivity versus the laser power obtained from (a). (e) CW laser responses of unit #3-2 at different temperatures. In (a) and (e), one period (2.5 ms) of the measured time-traced responses was selected for each laser power and temperature, then these periods were spliced in order. (f) Responsivity and LPV versus temperature obtained from (e).

Tables (2)

Tables Icon

Table 1. Dimensional Parameters of the LPVMIRDs

Tables Icon

Table 2. Performances of Different Types of RT MIR Photodetectors

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L P V = V DS = I p R = R i P 0 A d R ,
t r i s e = d e f f 2 q k T μ e ( P b T e ) ,
x ( n ( x ) μ e E ( x ) + D e n ( x ) x ) Δ n ( x ) τ e + G = 0 ,
E ( x ) x = q Δ n ( x ) ε .
G = { G 0 ( L a x < 0 ) 0 ( 0 x < L s ) .
G 0 = β Φ d ,
L e = D e τ e = k T q μ e τ e ,
Δ n ( x ) = { G 0 τ e exp ( x L e + L a L e ) ( L a x < L e L a ) G 0 τ e ( L e L a x < L e ) G 0 τ e exp ( x + L e L e ) ( L e x < L s ) .
E ( x ) = { q ε [ n 0 x + G 0 τ e L e exp ( x L e + L a L e ) ] + E 1 ( L a x < L e L a ) q ε ( n 0 + G 0 τ e ) x + E 2 ( L e L a x < L e ) q ε [ n 0 x G 0 τ e L e exp ( x + L e L e ) ] + E 3 ( L e x < L s ) ,
L P V = V DS = L a L s E ( x ) d x ,
L P V = V DS = { q β Φ τ e L a L s 2 ε d ( L a > L s ) q β Φ τ e L a 2 2 ε d ( L a L s ) .
I p = V DS R = { n 0 q 2 μ e τ e β λ P 0 W L a L s 2 ε h c L a + s ( L a > L s ) n 0 q 2 μ e τ e β λ P 0 W L a 2 2 ε h c L a + s ( L a L s ) ,
R i = I p P 0 A d = { n 0 q 2 μ e τ e β λ 2 ε h c ( 1 + L a / L s ) ( L a > L s ) n 0 q 2 μ e τ e β λ 2 ε h c ( 1 + L s / L a ) ( L a L s ) ,
D λ = R i ( A d Δ f ) 1 / 2 ( 4 k T Δ f / R ) 1 / 2 ,

Metrics