Abstract

Reference-frame-independent measurement-device-independent quantum key distribution (RFI-MDI-QKD) can reduce the complexity of practical systems caused by the alignment of the reference frame. Lengthening the transmission distance and improving the system clock rate are essential in practical applications of QKD. Herein, in an asymptotic case, we report the results of RFI-MDI-QKD over a distance of 160 km at a clock rate of 50 MHz. By considering the statistical fluctuation of a finite key, we experimentally implemented a four-intensity decoy-state RFI-MDI-QKD protocol with biased bases at transmission distances of 100 km and 120 km. In addition, we compare the RFI-MDI-QKD protocol with the original MDI-QKD protocol when different misalignments of the reference frame are deployed. The results demonstrate the robustness of our scheme and that the key rate of RFI-MDI-QKD can be improved for a large misalignment of the reference frame.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

In this highly intelligent age, the privacy of information is vital to personal lives and the management of companies and governments. Recently, researchers turned to physical theory, rather than mathematical complexities, to determine an unconditional security scheme. The significance of quantum key distribution (QKD) [1] has attracted increasing public attention, and extensive theoretical and experimental efforts have been made in this field [29].

However, the performance of practical apparatuses should be evaluated in a real QKD system; otherwise, the gap between the theoretical and practical models will have an adverse effect on security [1018]. Three main approaches have been proposed to close this gap. The first one is the use of a security patch [19,20]. However, this is not suitable for all potential and unnoticed security loopholes. The second one is device-independent (DI) QKD [2123], which is still not feasible with current technology, as a loophole-free Bell test is required [24]. The third and most promising approach is measurement-device-independent QKD (MDI-QKD) [25,26]. This approach successfully removes all detection-related security loopholes, which indicates that a secure key can be generated even when the measurement unit is fully controlled by the adversary Eve. Furthermore, with current technology, MDI-QKD can provide a solution to build more secure long-distance key distribution links or metropolitan networks [27,28].

The merits of the MDI-QKD protocol have attracted extensive attention in recent decades, and good progress has been made both theoretically [2933] and experimentally [3438]. As the relative phase and time bins of pulses can be firmly maintained along the transmission, time-bin encoding is a suitable scheme for a fiber-based QKD system. However, most experiments based on time-bin encoding can only distinguish one Bell state, such as |ψ, which will eventually lead to a factor of loss of 3/4 in the final key. In addition, active reference frame alignment is required to ensure a higher secure key rate (SKR). Although additional calibration parts appear feasible, they increase the complexity of the MDI-QKD system, which may lead to extra information leakage through these ancillary processes [16].

As a promising solution to eliminate the requirements for reference frame calibration, a reference-frame-independent (RFI) MDI-QKD protocol is proposed [39]. To the best of our knowledge, only two experimental verifications have been conducted until now [40,41]; these systems were operated at 1 MHz, and the longest distance between Alice and Bob was 20 km. Experiments with a higher clock rate and longer transmission distance have not been reported yet. To demonstrate the robustness of the RFI-MDI-QKD protocol, a comparison with the original MDI-QKD when different misalignments of the reference frame are deployed is also required [42,43].

In this paper, we propose a time-bin encoding scheme based on polarization multiplexing. By also using the detecting scheme proposed in our previous work [44], both Bell states |ψ± can be effectively distinguished. This indicates that the factor of loss in the final key can be reduced to 1/2. A proof-of-principle experiment based on the RFI-MDI-QKD protocol is conducted to show the feasibility of our scheme. The system clock rate is improved to 50 MHz. In an asymptotic case, we compare the performance of the RFI-MDI-QKD protocol with that of the original MDI-QKD protocol at a transmission distance of 160 km. A key rate of an order of magnitude higher is achieved for the RFI-MDI-QKD protocol when the misalignment of the relative reference frame β is controlled at 25°. For real-world applications, we deploy the decoy-state RFI-MDI-QKD protocol with the biased bases proposed in [43]. By employing the elegant statistical fluctuation analysis proposed in [41], positive SKRs are obtained for β=0° at a transmission distance of 120 km and for β=25° at a transmission distance of 100 km. We believe that this result can further illustrate the feasibility of the RFI-MDI-QKD protocol at a higher clock rate and longer secure transmission distance when a large misalignment of the reference frame occurs. Eliminating the calibration of the primary reference frames of the system will reduce the complexity of the realistic setup and prevent extra information leakage through the ancillary alignment processes.

2. PROTOCOL

In both the RFI-MDI-QKD and original MDI-QKD protocols, Alice and Bob first prepare their states via a random selection in several mutually orthogonal bases, which are Z-basis states (|0, |1), X-basis states (|+=(|0+|1)/2, |=(|0|1)/2) for the original MDI-QKD protocol, and additional Y-basis states (|+i=(|0+i|1)/2, |i=(|0i|1)/2) for the RFI-MDI-QKD protocol. They subsequently send them to an untrusted relay Charlie, who performs a Bell state measurement (BSM) and announces the corresponding measurement results. Charlie’s measurement projects the incoming states into one of two Bell states, |ψ+=(|01+|10)/2 or |ψ=(|01|10)/2. Alice and Bob retain the data that conform to these instances and discard the rest. After basis sifting and error estimation, they can obtain the total counting rate QiAiBλAλB and quantum bit error rate (QBER) EiAiBλAλB, where λA(B){μi,νi,o} denotes the signal states μi, decoy states νi for basis iA(B){Z,X,Y}, or vacuum states o randomly prepared by Alice (Bob). Notably, Alice and Bob do not choose any bases for vacuum states.

If the deviation of the practical reference from the ideal one βA(B) is considered, the Z basis is assumed to be well aligned (ZA=ZB=Z), and the X and Y bases can be written as follows [39,40]:

XB=cosβXA+sinβYA,YB=cosβYAsinβYA,β=|βAβB|/2.

The secure key is extracted from the data when both Alice and Bob encode their bits using signal states (μ) in the Z basis. The rest of the data are applied to estimate the parameters used in the calculation of the SKR. The SKR is given by [25,41]

RPzzPzzμμ{μ2e2μSZZ11,L[1IE]QZZμμfH(EZZμμ)},
where SZZ11,L is a lower bound of the yield of single-photon states in the Z basis, Pzz is the probability that both Alice and Bob send the Z-basis state, and Pzzμμ is the signal state probability when both the Z-basis states are sent from Alice (Bob). The parameter f is the error correction efficiency, and H(x)=xlog2(x)(1x)log2(1x) is the binary Shannon entropy function.

When state preparations are assumed perfectly, Eve’s information IE in Eq. (2) can be estimated using IE=H(eXX11,U) for the original MDI-QKD protocol, where eXX11,U is an upper bound of the quantum error rate of single-photon states in the X basis. As for the RFI-MDI-QKD protocol, IE can be bounded by [39]

IE=(1eZZ11,U)H[(1+u)/2]+eZZ11,UH[(1+v)/2],v=C/2(1eZZ11,U)2u2/eZZ11,U,u=min[C/2/(1eZZ11,U),1].
It is evident that IE is a function of the statistical quantity C and the quantum error rate of single-photon states in the Z basis eZZ11,U. When there are no Eve and other errors, C equals 2. To estimate an upper bound of Eve’s information IE, the value of C should be lower-bounded, and it can be estimated by
Cωmin[(12eω11,U)2,(12eω11,L)2],
where ω{XAXB,XAYB,YAXB,YAYB}, and eω11,U(L) is an upper (lower) bound of the quantum error rate of single-photon states when Alice and Bob choose the ω basis simultaneously. Note that EXAYBμμ and EYAXBμμ are theoretically symmetrical about 0.5. Thus, we assume EωλAλB0.5 for the sake of simplicity; otherwise, Bob can simply flip his bits corresponding to the relevant basis X, Y. In this scenario, the value C can be simplified using Cω(12eω11)2, where eω11=min{0.5,eω11,U}.

3. EXPERIMENTAL SETUP

The time-bin encoding method is used in our system, and the experimental setup is shown in Fig. 1. For both Alice and Bob, we employ a distributed feedback (DFB) laser combined with a home-built drive board. By operating the laser below and above the threshold, we first generate phase-randomized laser pulses with a temporal width of 2 ns and repetition rate of 50 MHz, which eliminates the possibility of an unambiguous-state-discrimination attack [45]. The generation, control, and acquisition of electrical pulses are realized by a digital waveform generator (NI-PXIe-6556) and board-level controller (NI-sbRIO-9606) (not pictured in Fig. 1). To calibrate the wavelength, the laser pulses are injected into an optical spectrum analyzer (OSA, YOKOGAWA AQ6370D) through the beam splitters (BSs) after the two lasers. The OSA, which has a resolution of 10–20 pm, is used to monitor the wavelength difference of the two independent lasers, which can be minimized by precisely adjusting the operating temperature of the lasers using the temperature controllers on the laser drive boards.

 figure: Fig. 1.

Fig. 1. Experimental setup of our scheme. Laser, a distributed feedback (DFB) laser combined with a home-built drive board; EPC, electronic polarization controller; PC, polarization controller; IM, intensity modulator; PM, phase modulator; PS, phase shifter; Cir, circulator, whose ports and directions are labeled above; ATT, attenuator; SPD, single photon detector; QC, an SMF-28 fiber spool, which has a channel attenuation of α=0.195dB/km; BS, beam splitter; PBS, polarizing beam splitter; FR, 90° Faraday rotator; AMZI, asymmetric Mach–Zehnder interferometer; SI, Sagnac interferometer.

Download Full Size | PPT Slide | PDF

As Alice and Bob’s parts are symmetrical, here we use Alice’s part as an example to illustrate our experimental setup. To realize the preparation of decoy states, an intensity modulator (IM, Photline, MXER-LN-10) is used to modulate the laser pulses into different intensities, and the vacuum states are prepared by stopping the trigger on the lasers. The circulator (Cir) is used to transmit the incident pulses from port 1 to port 2. Each of the pulses is thereafter divided into two adjacent pulses with a separation of 5 ns by the first modified asymmetric Mach–Zehnder interferometer (AMZI1), which is composed of a BS and a polarizing beam splitter (PBS). The relative phase of these two successive pulses is modulated by the phase modulator (PM1, Photline, MPZ-LN-10) in the Sagnac interferometer (SI). When the phase of 0 or π is modulated, the Z-basis state can be prepared. We define the light passing through the upper path of the second AMZI (AMZI2) as the time-bin state |0 and that passing through the lower path of AMZI2 as the time-bin state |1. These two time bins are separated by a time delay of 4.2 ns. When the phase of π/2 is modulated by PM1, the phases modulated by PM2 in AMZI2 are 0, π for the X basis and π/2, 3π/2 for the Y basis. We present our time-bin encoding scheme in Table 1.

Tables Icon

Table 1. Details of the Time-Bin Encoding Scheme

By adjusting the driven voltage of PM1, the average photon number of pulses in the two time bins can be normalized. However, an intensity modulator (IM) or variable optical attenuators (VOA) were used for this purpose in previous works [27,28,41]. Thus, our encoding scheme also reduces the complexity of the system to some extent. Furthermore, orthogonal polarization states (H, V) are multiplexed to the time bins because of the PBS at the output of AMZI2. For a comparison of the performance at different misalignments, phase shifters (PS) in AMZI2 are applied to control the reference frame. The quantum error rate in the X basis EXAXBλAλB can be regarded as a guide to set the deviation of the relative reference frame. Note that the whole time-bin encoding units are strictly thermally and mechanically isolated to enhance their stability.

At the measurement site, as the time bins are multiplexed with the orthogonal polarization states (H and V), we can use the PBS to demultiplex them easily. Two electric polarization controllers (EPC, General Photonics, PCD-M02-4X) are used to control the polarization fluctuations. By changing the polarization of input light until the single photon detector (SPD) count rate is maximized, all the polarization changes during photon transmission can be compensated for. Two BSs are used to realize the interference. Four commercial InGaAs SPDs (ID210) with an efficiency of ηd=12.5%, a dark count rate of Pd=1.2×106 and dead time of 5 μs are placed at each output of the BSs. Therefore, all the results of BSM are effectively detected. We define the Bell state |ψ+ as the clicks of D1 and D4 or D2 and D3 in Fig. 1 simultaneously, and the clicks of D1 and D3 or D2 and D4 are represented by |ψ. The parameters for the experiment and numerical simulations are listed in Table 2.

Tables Icon

Table 2. Parameters for the Experiment and Numerical Simulations

4. RESULTS AND DISCUSSION

We first test the indistinguishability of the photons from Alice and Bob by measuring the visibility of Hong–Ou–Mandel (HOM) interference. We obtain a visibility of 42.7%, which is less than the maximally possible value of 50% for a weak coherence source. The low visibility of the HOM interference is mainly caused by the detector-side imperfections owing to after-pulses. It has been determined that the after-pulses effect of SPDs has a greater impact on the measurement of HOM visibility [46]. Furthermore, two PBSs are used before the interference in our scheme. The change in polarization of the incident pulses after a long transmission distance will lead to a fluctuating intensity, and the finite extinction ratio (approximately 20 dB) of the PBS will also lower the visibility. Moreover, the beam-splitting ratio and detection-efficiency mismatch of the detectors can partly influence the visibility of the HOM interference as discussed in [46]. The central wavelength of the laser pulses is 1558.18 nm after calibration. Subsequently, we will discuss our experiment results for an asymptotic case and finite-size pulses case separately.

A. Asymptotic Case

In the asymptotic case, we adopt a symmetrical three-intensity decoy-state protocol for the sake of simplicity, i.e., μi=μi=μ for the signal states and νi=νi=ν for the decoy states. Through simulation of our system (see Appendices A and B for details), we determine that the optimal value of the average photon number for the original MDI-QKD protocol (O-MDI) and the RFI-MDI-QKD protocol (R-MDI) is almost the same at β=0°, as depicted by the blue and purple dashed lines in Fig. 3. This indicates that the SKR for both protocols can be obtained from a single experiment. The simulation and experimental results are presented in Table 3 and Fig. 2, which shows that the two curves are almost overlapped (red line for R-MDI and blue dashed line for O-MDI). We set the average photon number of the vacuum state to be 0, as there are no pulses emitted when the trigger on the lasers is paused. The value of C for R-MDI is estimated as 1.668. A QBER of 0.6% is obtained for the Z basis, according to the successful BSM declared by Charlie when Alice and Bob prepared the same states in the Z basis. In the ideal case, the QBER of the Z basis should be 0. The dark counts of the detector and the finite extinction ratio of the first AMZI in Fig. 1 will lead to incorrect coincidence counts and thus increase the QBER of the Z basis. Moreover, the vacuum and multiphoton components of weak coherent states cause accidental coincidences, which introduce an error rate of 50%. Thus, the error rate of the X basis has an expected value of 25%, as does that of the Y basis. However, when the visibility of the HOM interference is lower than 50%, the QBER of the X basis will be higher than 25%, as the error counts originate from the situation when the Bell state |ψ+ was announced as Alice and Bob prepared the same states in the X basis or |ψ was declared as the orthogonal states were prepared. In our system, the QBER of the X basis is measured to be 27.9%.

 figure: Fig. 2.

Fig. 2. Lower secure key rate bound of the RFI-MDI-QKD protocol (R-MDI) and the original MDI-QKD protocol (O-MDI) when the deviations of the reference frame are controlled at β=0° and β=25°. Except for simulating the green curve and purple dashed curve, all the average photon number settings of the signal state and decoy state are optimized for each transmission distance. The inserted figure is a partial magnification of the experimental results. The horizontal axis represents the distance between Alice (Bob) and Charlie, and the quantum channel is symmetric.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. Lower secure key rate bound and optimal average photon number of the RFI-MDI-QKD protocol (R-MDI) and the original MDI-QKD protocol (O-MDI) versus the different misalignments of the reference frame at the distance of 160 km. As the simulation results are symmetrical about β=45°, this figure only shows the variation in β from 0° to 45°.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 3. Experimental Results when Misalignments of the Reference Frame are β=0° and β=25°

To investigate the performance of the RFI-MDI-QKD protocol and the original MDI-QKD protocol at a nonzero β, we can control the voltage of the PS in Fig. 1 to simulate the deviation of the reference frame according to the simulation result of EXXμμ. Figure 3 presents the SKR and the optimal average photon number versus different deviations of the reference frame β when the transmission distance between Alice and Bob is 160 km. It is apparent that O-MDI is particularly dependent on the change in β. However, the SKR and the optimal average photon number of R-MDI are almost identical at different deviations of the reference frame. Thus, for R-MDI at β=25°, we maintain the values of the average photon number to be consistent with the setting at β=0°. In this case, the simulation results in Fig. 2 show that the red curve for β=0° is almost overlapped with the green curve marked with crosses for β=25°. For comparison, the optimal values of μ and ν for O-MDI at β=25° are used to conduct the experimental test. The related experimental results are presented in Table 3 and Fig. 2. The value of C for R-MDI is estimated as 1.595. At β=25°, the SKR of R-MDI is close to that at β=0° and is an order of magnitude higher than that of the O-MDI at a transmission distance of 160 km. Thus, unlike the O-MDI, the changes in the reference frame can barely influence the SKR of R-MDI and the optimal average photon number. These results demonstrate the robustness of the RFI-MDI-QKD protocol against the deviations of the relative reference frame.

B. Finite-Size Pulses Case

In real-world applications, the key size is always finite; thus, we must consider the effect of statistical fluctuation caused by a finite size of pulses. Such an analysis is crucial to ensure the security of RFI-MDI-QKD. The three-intensity decoy-state RFI-MDI-QKD protocol with biased bases proposed in [43] has demonstrated that the achievable SKR and transmission distance can be evidently improved compared with those of the original protocol, as this protocol avoids the futility in the Z basis for decoy states; thus, it can simplify the operation of the system. Recently, a universal analysis appropriate for fluctuating systems with an arbitrary number of observables has been developed in [41]. It is shown that, by adopting both the collective constraints and joint parameter estimation techniques, the SKR and transmission distance can be evidently improved for the four-intensity decoy-state RFI-MDI-QKD protocol.

Here, by using this elegant fluctuation analysis method, we employ the four-intensity decoy-state RFI-MDI-QKD protocol with biased bases in our experiment. In this scheme, except for the vacuum states, Alice and Bob must prepare the signal states μz for the Z basis and μx for both the X basis and Y basis owing to the symmetry of the X basis and Y basis in Eq. (4), whereas the decoy states νx are prepared only for the X basis and Y basis. All the related parameters, including μz, μx, νx, Pz, Px, and Pxμx, should be optimized to achieve the highest SKR. It is observed that the achievable SKR and transmission distance in this scheme can also be notably improved as shown in Fig. 4.

 figure: Fig. 4.

Fig. 4. Lower secure key rate bound of the RFI-MDI-QKD protocol (R-MDI) with biased bases when statistical fluctuations are considered. The black dashed line shows the results at β=25° using the original method proposed in [43]. The total number of pulse pairs sent from Alice and Bob is N=3×1012, the failure probability is ϵ=1010, and the full parameter optimization method is applied. The horizontal axis represents the distance between Alice (Bob) and Charlie, and the quantum channel is symmetric.

Download Full Size | PPT Slide | PDF

We apply the Chernoff bound for the fluctuation estimation in our experiment, with a fixed failure probability of ϵ=1010 and a total number of pulse pairs N=3×1012. After the simulation with full parameter optimization shown in Fig. 4, we observe that the results are slightly different as compared with the asymptotic case. It is evident that RFI-MDI-QKD deteriorates with the increase in β when statistical fluctuations are considered, which can be explained by the fact that the correlations of eXAXB11, eYAYB11, eXAYB11, and eYAXB11 are smeared with the increase in β; thus, it leads to poor estimation of the value of C in Eq. (4). Furthermore, the setup of optimal values for the experiment will change with the increase in β, whereas it almost remains the same in the asymptotic case as shown in Fig. 3. For instance, when the transmission distance is 100 km, the optimal signal intensity setting for the Z basis μz at β=0° is 0.4407, whereas it is 0.2648 at β=25°.

We experimentally demonstrate the feasibility of the four-intensity biased decoy-state scheme when statistical fluctuations are considered. The SKRs for the transmission distances of 120 km and 100 km are obtained, as presented in Table 4 and Fig. 4. The respective deviations of the reference frame are controlled at β=0° and β=25°. At a transmission distance of 120 km, the result of QZZμμ is 7.463×107. The values of the other optimized parameters are set as μx=μy=0.34, νx=νy=0.066, Pz=0.219, Px=Py=0.339, Pzμz=1, and Pxμx=Pyμy=0.236. For the experiment at 100 km, these values are QZZμμ=1.351×106, μx=μy=0.3, νx=νy=0.047, Pz=0.156, Px=Py=0.377, Pzμz=1, and Pxμx=Pyμy=0.216. At extreme distances, we noted that the statistical fluctuation of the finite key has a striking impact on the experimental outcomes, as a small change in the count rate may not generate a positive key rate. In this experiment, we have performed repeated trials to obtain reasonable results.

Tables Icon

Table 4. Experimental Results when Statistical Fluctuations are Considered

5. CONCLUSION

In conclusion, with a high-speed clock rate of 50 MHz and a transmission distance of more than 100 km, RFI-MDI-QKD is demonstrated based on time-bin encoding and polarization multiplexing. Two of the four Bell states |ψ± can be distinguished without a loss. Moreover, the states in different bases can be prepared by only using phase modulators without intensity modulators. The value of the quantum error rate of the Z basis EZZμμ demonstrates the feasibility of this scheme. In the asymptotic case, we experimentally compare the performances of the RFI-MDI-QKD protocol and original MDI-QKD protocol for different deviations of the reference frame at a transmission distance of 160 km. It is shown that the SKR of the RFI-MDI-QKD protocol is an order of magnitude higher than that of the original MDI-QKD when the misalignment of the reference frame is β=25°. Moreover, a simulation model for the RFI-MDI-QKD protocol is provided and combined with the experimental results; the robustness of the RFI-MDI-QKD protocol against a change in the reference frame has been demonstrated through the invariance of SKR and optimal average photon numbers for different deviations of the reference frame. The four-intensity decoy-state RFI-MDI-QKD protocol with biased bases is employed to consider statistical fluctuation of the finite key in our experiment. By adopting both the collective constraints and joint parameter estimation techniques, the achievable SKR and transmission distance are evidently improved compared with those of the original biased decoy-state RFI-MDI-QKD protocol. We also experimentally implemented this protocol at a transmission distance of 120 km when the deviation of the reference frame is controlled at β=0° and at a distance of 100 km when β=25°.

APPENDIX A: SIMULATION MODEL

To simulate the protocol performance and obtain the optimal value of the average photon number for the experimental system, we must first derive the model for the total counting rate QiAiBλAλB and the error counting rate EQiAiBλAλB. According to the method in [47], we obtain

QZAZBλAλB=QC+QE,QZAZBλAλBEZAZBλAλB=edQC+(1ed)QE,QXAXBλAλB=2y2[2y24yI0(x)+I0(B)+I0(E)],QXAXBλAλBEXAXBλAλB=2y2[y22yI0(x)+edI0(B)+(1ed)I0(E)],QXAYBλAλB=2y2{2y24yI0(x)+I0[Θ]+I0[Ξ]},QXAYBλAλBEXAYBλAλB=2y2{y22yI0(x)+edI0[Ξ]+(1ed)I0[Θ]},QYAXBλAλBEYAXBλAλB=2y2{y22yI0(x)+edI0[Θ]+(1ed)I0[Ξ]},
where
QC=2(1Pd)2eμ/2[1(1Pd)eηAλA/2]×[1(1Pd)eηBλB/2],QE=2Pd(1Pd)2eμ/2[I0(2x)(1Pd)eμ/2],B=2xcosβ,E=2xsinβ,Θ=2x(cosβ+sinβ),Ξ=2x(cosβsinβ),
where I0(·) is the modified Bessel function of the first kind, ed=0.005 is the misalignment-error probability, Pd is the dark count of a single-photon detector, ηA(ηB) is the transmission of Alice (Bob), and μ=ηAλA+ηBλA, x=ηAλAηBλB/2, and y=(1Pd)eμ/4. Owing to the symmetry of the quantum channel and the X basis and Y basis in Eq. (4), we treat the parameters of the X basis and Y basis and the average photon number setting for Alice and Bob equivalently for the sake of simplicity. Accordingly, μA=μB, QXAXBλAλB=QYAYBλAλB, QXAYBλAλB=QYAXBλAλB, and EQXAXBλAλB=EQYAYBλAλB. The quantum error rate can be calculated as EiAiBλAλb=EQiAiBλAλb/QiAiBλAλb, and it is apparent that EXAYBλAλb and EYAXBλAλb are symmetrical about 0.5. As mentioned above, we assume that the quantum error rate is less than 0.5 for the sake of simplicity; thus, eXAYBλAλb=1EXAYBλAλb if EXAYBλAλb>0.5.

APPENDIX B: SECURE KEY RATE ESTIMATION

The SKR of Eq. (2) is calculated using an analytical method with two decoy states according to [41,48]. The lower bound and upper bound of the single-photon yield and the error yield are given by

m11LT1T2a1b2T3a1a1(b1b2b1b2),m11UMviviT3a1b1,
where
T1=a1b2Mvivi+a1b2a0Moμi+a1b2a0Mμio,T2=a1b2Mμiμi+a1b2a0b0Moo,T3=a0Movi+b0Mvioa0b0Moo,a(b)k=μikeμi/k!,a(b)k=vikevi/k!.
In the above formula, MλAλB{QλAλB,EQλAλB}, m11{S11,eS11}, i{Z,X,Y}, and e11L(U)=eS11L(U)/S11U(L).

Notably, the expression in Eq. (B1) is independent of ω; thus, we can use the above equations to estimate the parameters in Eq. (2) for the asymptotic case, which are listed in Table 5, and thereafter to calculate the SKR. However, as there are only signal states for the Z basis in the biased decoy-state protocol, we emphasize that eZZ11U and eXX11U may be different and should be estimated individually. By using the following formula:

m11UMuzuzT3a1b1,
the upper bound of the error yield for the Z basis can be estimated, where
T3=a0Mouz+b0Muzoa0b0Moo.
By using the fluctuation analysis method proposed in [41], the parameters used for SKR estimation are listed in Table 5.

Tables Icon

Table 5. Parameters Estimated in the Process of Secure Key Rate Calculation

Funding

National Natural Science Foundation of China (NSFC) (11674397); State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications (BUPT)) (IPOC2017ZT04).

Acknowledgment

The authors thank Chao Wang for helpful discussion on statistical fluctuations analysis.

REFERENCES

1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution, and coin-tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175–179.

2. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]  

3. X. B. Wang, “Beating the PNS attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef]  

4. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005). [CrossRef]  

5. T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014). [CrossRef]  

6. A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010). [CrossRef]  

7. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012). [CrossRef]  

8. C. Z. Peng, H. Liang, J. Wang, J. W. Pan, J. H. Wang, K. Chen, L. Yang, L. K. Chen, S. B. Liu, and T. Y. Chen, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express 18, 8587–8594 (2010). [CrossRef]  

9. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]  

10. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

11. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]  

12. S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011). [CrossRef]  

13. K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017). [CrossRef]  

14. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006). [CrossRef]  

15. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010). [CrossRef]  

16. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011). [CrossRef]  

17. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

18. H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011). [CrossRef]  

19. Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010). [CrossRef]  

20. T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012). [CrossRef]  

21. A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007). [CrossRef]  

22. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010). [CrossRef]  

23. M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011). [CrossRef]  

24. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015). [CrossRef]  

25. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012). [CrossRef]  

26. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012). [CrossRef]  

27. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016). [CrossRef]  

28. Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016). [CrossRef]  

29. F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014). [CrossRef]  

30. M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014). [CrossRef]  

31. F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015). [CrossRef]  

32. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015). [CrossRef]  

33. Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016). [CrossRef]  

34. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013). [CrossRef]  

35. T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013). [CrossRef]  

36. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013). [CrossRef]  

37. L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016). [CrossRef]  

38. G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016). [CrossRef]  

39. Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014). [CrossRef]  

40. C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015). [CrossRef]  

41. C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017). [CrossRef]  

42. C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017). [CrossRef]  

43. C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases,” J. Lightwave Technol. 35, 4574–4578 (2017). [CrossRef]  

44. G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016). [CrossRef]  

45. Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013). [CrossRef]  

46. C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017). [CrossRef]  

47. X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012). [CrossRef]  

48. Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013). [CrossRef]  

References

  • View by:

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution, and coin-tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175–179.
  2. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
    [Crossref]
  3. X. B. Wang, “Beating the PNS attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref]
  4. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref]
  5. T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
    [Crossref]
  6. A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
    [Crossref]
  7. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
    [Crossref]
  8. C. Z. Peng, H. Liang, J. Wang, J. W. Pan, J. H. Wang, K. Chen, L. Yang, L. K. Chen, S. B. Liu, and T. Y. Chen, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
    [Crossref]
  9. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  10. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
  11. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
    [Crossref]
  12. S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
    [Crossref]
  13. K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
    [Crossref]
  14. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
    [Crossref]
  15. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
    [Crossref]
  16. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
    [Crossref]
  17. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).
  18. H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
    [Crossref]
  19. Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
    [Crossref]
  20. T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
    [Crossref]
  21. A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref]
  22. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
    [Crossref]
  23. M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011).
    [Crossref]
  24. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
    [Crossref]
  25. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  26. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref]
  27. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
    [Crossref]
  28. Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
    [Crossref]
  29. F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
    [Crossref]
  30. M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
    [Crossref]
  31. F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
    [Crossref]
  32. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
    [Crossref]
  33. Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
    [Crossref]
  34. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
    [Crossref]
  35. T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
    [Crossref]
  36. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
    [Crossref]
  37. L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
    [Crossref]
  38. G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
    [Crossref]
  39. Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
    [Crossref]
  40. C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
    [Crossref]
  41. C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
    [Crossref]
  42. C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017).
    [Crossref]
  43. C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases,” J. Lightwave Technol. 35, 4574–4578 (2017).
    [Crossref]
  44. G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
    [Crossref]
  45. Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
    [Crossref]
  46. C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
    [Crossref]
  47. X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).
    [Crossref]
  48. Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
    [Crossref]

2017 (5)

2016 (6)

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

2015 (4)

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

2014 (4)

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
[Crossref]

2013 (5)

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
[Crossref]

2012 (5)

X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

2011 (4)

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
[Crossref]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011).
[Crossref]

2010 (6)

Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

C. Z. Peng, H. Liang, J. Wang, J. W. Pan, J. H. Wang, K. Chen, L. Yang, L. K. Chen, S. B. Liu, and T. Y. Chen, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
[Crossref]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref]

2009 (1)

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

2008 (1)

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

2007 (2)

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

2006 (1)

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

2005 (2)

X. B. Wang, “Beating the PNS attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

2004 (1)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Abellán, C.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Acn, A.

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Amaya, W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Andersen, U. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Bao, W.-S.

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution, and coin-tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175–179.

Bernien, H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution, and coin-tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175–179.

Braunstein, S. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

Brunner, N.

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Chan, P.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Chen, H.

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Chen, K.

Chen, L. K.

Chen, S.-J.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Chen, T. Y.

Chen, T.-Y.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Chen, W.

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Chen, Z.-B.

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Comandar, L.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Cui, K.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Cui, W.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Curty, M.

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011).
[Crossref]

da Silva, T. F.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

do Amaral, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Dréau, A. E.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Dynes, J.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

Dynes, J. F.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Elkouss, D.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Elser, D.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Fejer, M. M.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Fröhlich, B.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Fung, C.-H. F.

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

Gehring, T.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Gisin, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Gottesman, D.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Gray, S.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Guo, G. C.

Guo, G.-C.

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Guo, J. F.

Han, Z. F.

Han, Z.-F.

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Hanson, R.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

He, D.-Y.

Hensen, B.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Huang, J.-Z.

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Huang, M.-Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Jacobsen, C. S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Jain, N.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

Ji, Y.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Jiang, M.-S.

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
[Crossref]

Jiang, X.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Kalb, N.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Koashi, M.

T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
[Crossref]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Laing, A.

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

Leuchs, G.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

Li, C.-Y.

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

Li, F.-Y.

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, H. W.

Li, H.-W.

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, L.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Li, M. J.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Liang, H.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

C. Z. Peng, H. Liang, J. Wang, J. W. Pan, J. H. Wang, K. Chen, L. Yang, L. K. Chen, S. B. Liu, and T. Y. Chen, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
[Crossref]

Liang, L.-M.

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
[Crossref]

Lim, C. C. W.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Liu, D.

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Liu, H.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Liu, N.-L.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Liu, S. B.

Liu, Y.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Lloyd, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Lo, H.-K.

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Lu, C.-Y.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Lucamarini, M.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Lucio-Martinez, I.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Lütkenhaus, N.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Lydersen, L.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Ma, H.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Ma, X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Makarov, V.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Mao, Y.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Markham, M.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Marquardt, C.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

Massar, S.

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Mitchell, M. W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Moroder, T.

M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011).
[Crossref]

Nolan, D.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

O’Brien, J. L.

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

Ottaviani, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Pan, J. W.

Pan, J.-W.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Pelc, J. S.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Peng, C. Z.

Peng, C.-Z.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Penty, R. V.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Pirandola, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

Pironio, S.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref]

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Preskill, J.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Pruneri, V.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Qi, B.

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

Qian, L.

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

Rarity, J. G.

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

Razavi, M.

X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).
[Crossref]

Reiserer, A.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Rubenok, A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Ruitenberg, J.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Sangouard, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref]

Sasaki, T.

T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
[Crossref]

Scarani, V.

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Schouten, R. N.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Sharpe, A.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Sharpe, A. W.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Shentu, G.-L.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Shields, A.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Skaar, J.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Slater, J. A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Song, X.-T.

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Spedalieri, G.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Stucki, D.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Sun, S.-H.

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
[Crossref]

Sun, X.-X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Sun, Y.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Tam, S.-B.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Tamaki, K.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Taminiau, T. H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Tang, G.-Z.

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

Tang, Y.-L.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Temporao, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Temporão, G. P.

Ten, S.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Thew, R. T.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Tittel, W.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Towery, C. R.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Twitchen, D. J.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vannel, F.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Vermeulen, R. F. L.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vitoreti, D.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von der Weid, J.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von der Weid, J. P.

Walenta, N.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Wang, C.

Wang, F.-X.

Wang, J.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

C. Z. Peng, H. Liang, J. Wang, J. W. Pan, J. H. Wang, K. Chen, L. Yang, L. K. Chen, S. B. Liu, and T. Y. Chen, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
[Crossref]

Wang, J. H.

Wang, L.-J.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Wang, Q.

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases,” J. Lightwave Technol. 35, 4574–4578 (2017).
[Crossref]

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017).
[Crossref]

Wang, S.

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Wang, X. B.

X. B. Wang, “Beating the PNS attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

Wang, X.-B.

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
[Crossref]

Wang, Z.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Weedbrook, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

Wehner, S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Wei, K.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Wiechers, C.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Wittmann, C.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Xavier, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Xavier, G. B.

Xiao, J.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Xu, F.

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Xu, H.

F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

Yamamoto, Y.

T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
[Crossref]

Yang, L.

Yang, X.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Yin, H.-L.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

Yin, Z. Q.

Yin, Z.-Q.

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states,” J. Lightwave Technol. 35, 4996–5002 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Yong, H.-L.

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

You, L.-X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Yu, Z.-W.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
[Crossref]

Yuan, Z.

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

Yuan, Z. L.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Zbinden, H.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Zhang, C.-M.

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases,” J. Lightwave Technol. 35, 4574–4578 (2017).
[Crossref]

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Zhang, L.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Zhang, Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Zhang, W.-J.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Zhang, Y.

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Zhao, Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Zhou, F.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Zhou, Y.-H.

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
[Crossref]

Zhou, Z.

S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Zhu, J.-R.

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017).
[Crossref]

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases,” J. Lightwave Technol. 35, 4574–4578 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Chin. Phys. Lett. (1)

G.-Z. Tang, S.-H. Sun, H. Chen, C.-Y. Li, and L.-M. Liang, “Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors,” Chin. Phys. Lett. 33, 120301 (2016).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Nat. Photonics (5)

F. Xu, M. Curty, B. Qi, L. Qian, and H.-K. Lo, “Discrete and continuous variables for measurement-device-independent quantum cryptography,” Nat. Photonics 9, 772–773 (2015).
[Crossref]

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Reply to ‘discrete and continuous variables for measurement-device-independent quantum cryptography’,” Nat. Photonics 9, 773–775 (2015).
[Crossref]

L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Z. Yuan, J. Dynes, and A. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

Nature (2)

T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature 509, 475–478 (2014).
[Crossref]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

New J. Phys. (2)

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250  km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (13)

C.-M. Zhang, J.-R. Zhu, and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution,” Phys. Rev. A 95, 032309 (2017).
[Crossref]

F. Xu, H. Xu, and H.-K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).
[Crossref]

Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Phys. Rev. A 88, 062339 (2013).
[Crossref]

Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of decoy-state quantum key distribution using phase information,” Phys. Rev. A 88, 022308 (2013).
[Crossref]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference frame independent quantum key distribution,” Phys. Rev. A 82, 7261–7265 (2010).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A 83, 062331 (2011).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

M. Curty and T. Moroder, “Heralded-qubit amplifiers for practical device-independent quantum key distribution,” Phys. Rev. A 84, 010304 (2011).
[Crossref]

G.-Z. Tang, S.-H. Sun, F. Xu, H. Chen, C.-Y. Li, and L.-M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporao, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Phys. Rev. Lett. (11)

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

A. Acn, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref]

X. B. Wang, “Beating the PNS attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z.-F. Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Phys. Rev. X (1)

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
[Crossref]

Quantum Inf. Comput. (2)

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Quantum Inf. Process. (1)

Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F. Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum Inf. Process. 13, 1237–1244 (2014).
[Crossref]

Sci. Rep. (1)

K. Wei, H. Liu, H. Ma, X. Yang, Y. Zhang, Y. Sun, J. Xiao, and Y. Ji, “Feasible attack on detector-device-independent quantum key distribution,” Sci. Rep. 7, 449 (2017).
[Crossref]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution, and coin-tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175–179.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup of our scheme. Laser, a distributed feedback (DFB) laser combined with a home-built drive board; EPC, electronic polarization controller; PC, polarization controller; IM, intensity modulator; PM, phase modulator; PS, phase shifter; Cir, circulator, whose ports and directions are labeled above; ATT, attenuator; SPD, single photon detector; QC, an SMF-28 fiber spool, which has a channel attenuation of α=0.195dB/km; BS, beam splitter; PBS, polarizing beam splitter; FR, 90° Faraday rotator; AMZI, asymmetric Mach–Zehnder interferometer; SI, Sagnac interferometer.
Fig. 2.
Fig. 2. Lower secure key rate bound of the RFI-MDI-QKD protocol (R-MDI) and the original MDI-QKD protocol (O-MDI) when the deviations of the reference frame are controlled at β=0° and β=25°. Except for simulating the green curve and purple dashed curve, all the average photon number settings of the signal state and decoy state are optimized for each transmission distance. The inserted figure is a partial magnification of the experimental results. The horizontal axis represents the distance between Alice (Bob) and Charlie, and the quantum channel is symmetric.
Fig. 3.
Fig. 3. Lower secure key rate bound and optimal average photon number of the RFI-MDI-QKD protocol (R-MDI) and the original MDI-QKD protocol (O-MDI) versus the different misalignments of the reference frame at the distance of 160 km. As the simulation results are symmetrical about β=45°, this figure only shows the variation in β from 0° to 45°.
Fig. 4.
Fig. 4. Lower secure key rate bound of the RFI-MDI-QKD protocol (R-MDI) with biased bases when statistical fluctuations are considered. The black dashed line shows the results at β=25° using the original method proposed in [43]. The total number of pulse pairs sent from Alice and Bob is N=3×1012, the failure probability is ϵ=1010, and the full parameter optimization method is applied. The horizontal axis represents the distance between Alice (Bob) and Charlie, and the quantum channel is symmetric.

Tables (5)

Tables Icon

Table 1. Details of the Time-Bin Encoding Scheme

Tables Icon

Table 2. Parameters for the Experiment and Numerical Simulations

Tables Icon

Table 3. Experimental Results when Misalignments of the Reference Frame are β=0° and β=25°

Tables Icon

Table 4. Experimental Results when Statistical Fluctuations are Considered

Tables Icon

Table 5. Parameters Estimated in the Process of Secure Key Rate Calculation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

XB=cosβXA+sinβYA,YB=cosβYAsinβYA,β=|βAβB|/2.
RPzzPzzμμ{μ2e2μSZZ11,L[1IE]QZZμμfH(EZZμμ)},
IE=(1eZZ11,U)H[(1+u)/2]+eZZ11,UH[(1+v)/2],v=C/2(1eZZ11,U)2u2/eZZ11,U,u=min[C/2/(1eZZ11,U),1].
Cωmin[(12eω11,U)2,(12eω11,L)2],
QZAZBλAλB=QC+QE,QZAZBλAλBEZAZBλAλB=edQC+(1ed)QE,QXAXBλAλB=2y2[2y24yI0(x)+I0(B)+I0(E)],QXAXBλAλBEXAXBλAλB=2y2[y22yI0(x)+edI0(B)+(1ed)I0(E)],QXAYBλAλB=2y2{2y24yI0(x)+I0[Θ]+I0[Ξ]},QXAYBλAλBEXAYBλAλB=2y2{y22yI0(x)+edI0[Ξ]+(1ed)I0[Θ]},QYAXBλAλBEYAXBλAλB=2y2{y22yI0(x)+edI0[Θ]+(1ed)I0[Ξ]},
QC=2(1Pd)2eμ/2[1(1Pd)eηAλA/2]×[1(1Pd)eηBλB/2],QE=2Pd(1Pd)2eμ/2[I0(2x)(1Pd)eμ/2],B=2xcosβ,E=2xsinβ,Θ=2x(cosβ+sinβ),Ξ=2x(cosβsinβ),
m11LT1T2a1b2T3a1a1(b1b2b1b2),m11UMviviT3a1b1,
T1=a1b2Mvivi+a1b2a0Moμi+a1b2a0Mμio,T2=a1b2Mμiμi+a1b2a0b0Moo,T3=a0Movi+b0Mvioa0b0Moo,a(b)k=μikeμi/k!,a(b)k=vikevi/k!.
m11UMuzuzT3a1b1,
T3=a0Mouz+b0Muzoa0b0Moo.

Metrics