Abstract

Active terahertz (THz) waveform synthesis is desirable for a broad range of applications including high speed wireless communications at Tb/s speeds and coherent manipulation of quantum systems driven by engineered light fields. In this work, we demonstrate an all-optical, fully reconfigurable platform for direct and arbitrary temporal shaping of broadband THz light pulses. The technique is based on an array of line photoexcitations of charge carriers within an otherwise homogeneous semiconductor embedded within a parallel plate waveguide. The spatially periodic charge distributions locally modulate the THz dielectric function, mapping each photoexcited line in the array directly to a reflected single-cycle THz pulse. By tuning the spatial distribution of the line excitations, arbitrarily shaped THz pulse sequences can be created from a single THz input pulse with relatively little intrinsic loss. We demonstrate synthesis of multi-cycle THz waveforms, 8-bit digital pulse sequences, and THz frequency combs with control over amplitude, central frequency, and linewidth.

© 2017 Optical Society of America

1. INTRODUCTION

The temporal shaping and encoding of information on a terahertz (THz) lightwave is key to achieving Tb/s wireless data transfer rates [13]. At the same time, THz time-domain spectroscopy has evolved from measuring the broadband linear response of materials to highly nonlinear, coherent manipulations of quantum systems requiring advanced control over the pulse field profile [47]. Given a robust, broadband control scheme over the THz pulse amplitude and phase, multiple phase-locked THz pulse sequences can be generated and used to manipulate quantum states in the same manner as microwave pulses are currently used in multi-pulse nuclear magnetic resonance (NMR) spectroscopy [8]. Passive shaping of THz fields accomplishes this in a static manner using spectral filters, including plasmonic [9,10], metamaterial [11,12], or photonic structures [13]. Extensions of these methods to active mode operation provide tunability over the targeted modulated bandwidth, often through pulsed photoexcitation; however, commonly only in the vicinity of the engineered resonance [1423] or photonic bandgap [24,25]. More direct approaches to narrowband THz generation have been heavily developed by low-temperature-operated quantum cascade lasers [26,27] and by tunable difference frequency mixing of optical pumps in a nonlinear crystal [28], such as in injection-seeded THz-wave parametric generation (IS-TPG) [29]. These methods, however, offer a limited amount of control over the output central frequency and bandwidth.

In order to achieve broadband THz waveform envelope control, spatial or temporal shaping of femtosecond optical pump pulses driving THz generation in an electro-optic crystal or a photoconductive antenna has been applied [3032]. Though very versatile, the damage threshold of programmable optics used to perform optical pulse shaping, such as spatial light modulators (SLMs), often limits the total amount of pump energy available to generate the THz pulse train and therefore limits the output THz power. Schemes that use photoconductive gated antennas to generate THz waves from temporally shaped optical pulses, while simple, are inherently limited by current saturation in the semiconductor. Nonlinear optical methods for generating intense single-cycle THz pulses with photon quantum conversion efficiencies at or exceeding 100% now exist, such as tilted pulse front optical rectification in LiNbO3 [3335]; waveform synthesis techniques that operate directly in the THz domain are desirable to take advantage of these high power sources. In this work, we demonstrate a flexible platform for arbitrary shaping of THz waveforms driven by such intense, single-cycle THz pulses.

2. METHODS

The pulse-shaping method is based on spatially patterned photoinjected charge carrier distributions inside a semiconductor-filled THz parallel-plate waveguide (PPWG), which we have previously demonstrated as a versatile platform to modulate the amplitude [36], propagation direction, pulse delay [37], mode coupling [38], and frequency content of THz pulses [39]. Input THz pulses, polarized perpendicular to the plates, are efficiently coupled into the dispersionless TEM mode of the PPWG and interact with the optically injected photoconductive regions. Importantly, these regions can be sub-THz wavelength in their spatial extent due to the much smaller diffraction limit of the defining optical pump pulse and small diffusive spread in the picoseconds after injection. In this work, we create a one-dimensional metal–dielectric line array within the waveguide that controllably and reversibly creates replicas of an incident single-cycle THz pulse, with a temporal spacing between replicas governed by the periodicity of the lines. We demonstrate multi-cycle envelope-engineered pulses with control over the frequency, linewidth, and phase, as well as encoding of a digital 8-bit binary sequence onto a THz waveform.

The experiment uses a THz single-cycle pulse generated by tilted pulse-front optical rectification in a LiNbO3 crystal [33,40]. This pulse couples into a tapered aluminum PPWG [41], as illustrated in Fig. 1(a). A 10 mm thick float-zone silicon beam splitter (BS) at 45° is placed before the PPWG and redirects 65% of the reflected signal (red) for detection performed with electro-optic sampling in a ZnTe crystal. A window etched in the top tapered aluminum plate permits the 1070 nm pump pulse from an optical parametric amplifier to photoexcite the embedded sample. Figure 1(b) shows a side view of the embedded Si wafer; gold and indium-tin oxide (ITO) coatings confine the THz light for dispersionless propagation in the transverse electro-magnetic (TEM) mode. In the low carrier density regime where all frequency components of the THz pulse are below the photoinduced plasma frequency ωp, the finite conductivity of the optically transparent ITO dominates the waveguide loss through the power absorption coefficient αwg=nSiRS/(Z0d)=0.6  cm1, where nSi=3.42 is the refractive index at THz frequencies inside silicon, Z0 is the vacuum permittivity, d=150  μm is the waveguide thickness, and RS1  Ω/square is the sheet resistance of the ITO layer [36]. The photon energy of the pump (1.16 eV) is tuned just above the bandgap energy of silicon (1.12 eV) to take advantage of the >1  mm penetration depth [42], injecting charge carriers uniformly through the thickness of the silicon to avoid scattering into higher order modes [38]. In our operation regime, the photoinduced charge carrier densities (1015  cm3) are kept 1 order of magnitude lower than the threshold for mobility reduction due to electron–hole scattering [43]. Furthermore, the fluence employed (10  μJ/cm2) is still 3 orders of magnitude below the optical damage threshold for silicon excited at a wavelength of 1060 nm with 100 fs pulses [44]. A shadow mask placed atop the transparent ITO layer (10% transmission at 1070 nm) spatially shapes the photoexcitation to induce a periodic photoconductivity modulation along the THz propagation direction, creating a zero-gap, one-dimensional metal–dielectric photonic crystal structure with a sharp transmission and reflection enhancement (compared to uniform illumination) at a frequency fm=mc0/(2nSiL), where m is an integer, c0 the vacuum speed of light, and L is the periodicity of the array [39,45]. We note the complex-valued index modulation (Re(n)Im(n)) is intrinsically different from a distributed Bragg reflector, which is based solely on index modulation and exhibits a gap in the photon density of states. Furthermore, the predominant single-cycle character of the transmitted pulse inhibits the pulse-shaping ability in transmission mode, thus all experiments are performed in reflection configuration.

 

Fig. 1. (a) Schematic representation of the experimental setup. A single-cycle THz pulse (green) is coupled into a dielectric-filled parallel-plate waveguide and detected in reflection geometry. (b) An optically transparent ITO coating allows spatially defined charge carrier injection (dotted regions) using above-bandgap pulses of NIR light (light blue). The periodically repeating photoinjected metallic regions (dotted regions) partially reflect the incident THz pulse to generate a multi-cycle THz signal (red).

Download Full Size | PPT Slide | PDF

3. RESULTS AND DISCUSSION

An example of the input and reflected THz waveforms are shown in Fig. 2(a), where the black line is collected from the air–Si interface reflection inside the tapered PPWG. A digital sequence (red curve) of (111101) is created, with 1 denoting a photoexcited line and 0 an unexcited line, as shown in the inset diagram. The amplitude of the THz reflection from each individual line (1% here) increases with charge carrier density and, therefore, pump fluence, providing a way to gray-scale adjust the relative peak amplitude of each pulse in the waveform. The Gaussian spatial intensity profile of the pump pulse illuminating the entire one-dimensional array is then imprinted along the time axis of the synthesized waveform. The shadow mask period (L) and line width (w) used are 160 and 20 μm, respectively. The blue curve shows finite-difference time-domain (FDTD) simulation results using the aforementioned experimental parameters and using the experimental reference electric field profile as an input field. We use a Gaussian spatial pump intensity profile to replicate the experimental conditions and reproduce the experimental results with good agreement.

 

Fig. 2. (a) Typical input pulse (black) and reflected pulse replicas (red) for 20 μm wide pumped lines (w) with a lattice pitch (L) of 160 μm. Accompanying FDTD simulation results (blue) using the reference pulse shape as input. A digital sequence (111101) is created by photoexciting all lines but the fifth (inset). (b) (top) Incident electric field amplitude (black), synthesized frequency comb (red) and simulated signal (blue) for 12 photoinjected lines of 20 μm width (w) and 160 μm period (L). (b) (bottom) Spectral phase of the experimentally synthesized multi-cycle signal.

Download Full Size | PPT Slide | PDF

Generating a waveform composed of 12 pulse replicas with the aforementioned parameters leads to the synthesis of a frequency comb with line separation Δν=c0/(2nSiL)=274  GHz. The incident broadband electric field amplitude (black, top) and reflected frequency comb (red, top) presented in Fig. 2(b) demonstrate the clear spectral reshaping induced by a 10 μJ near-infrared (NIR) pump pulse. The blue curve shows that the FDTD simulations reproduce the spectrum of the synthesized waveform very well with a faster decay of experimental reflection in frequency due to guiding losses. The bandwidth of the incident pulse determines the highest harmonic achievable for a given line separation as well as the frequency range where single-harmonic synthesis can be achieved. The red curve in the lower panel shows the associated spectral phase of the reflected waveform in the vicinity of the first three resonances with high and low frequency ranges omitted due to low signal.

The frequency comb can be tuned continuously within the input THz pulse bandwidth by adjusting the lattice pitch (L). Figure 3 shows the effect of tuning the lattice pitch from 160 μm (black curve) to 60 μm (pink curve) with a constant line width (w=20  μm) and line number (12). Consequently, the first-order resonance is shifted from 0.27 to 0.73 THz, as shown in the inset. The input bandwidth determines how short the input pulse is in time and thus how closely lines can be brought together before replicas start overlapping temporally. When the overlap is significant, envelope reshaping can occur, as can be observed in the peaked oscillations at early times of the 60 μm (pink) data set. For the largest pitch of 160 μm, where multiple resonances lie within the input pulse bandwidth, a gradual drift can be seen in the carrier envelope phase of each replica from 14 to 47 ps. This evolution in the carrier envelope phase is due to the dispersion induced within the photoexcited regions in the vicinity of the plasma frequency (ωp/2π1.3  THz). When a single resonance is present within the input bandwidth and is far enough from the plasma frequency (e.g., the L=80  μm waveform in Fig. 3), the resulting waveform is purely monochromatic and has envelope characteristics solely governed by the pump intensity profile.

 

Fig. 3. Electric field time trace of the 12-line frequency combs and associated power spectrum (inset) for various lattice pitches (L) at constant pump energy (15 μJ) and line width (w=20  μm).

Download Full Size | PPT Slide | PDF

Bandwidth tuning of the THz waveforms is achieved simply by adjusting the number of photoexcited lines in the array. As the pump intensity profile is narrowed, using an adjustable slit just above the shadow mask, fewer lines are injected, resulting in fewer pulse replicas and broader bandwidth. Linewidth tuning, as shown in Fig. 4, becomes evident as the pump spatial extent is broadened from 0.12 mm (black) to 2.45 mm (green) with the inset showing the synthesized electric field time traces. We observe excellent agreement between the waveform envelope extent and the time equivalent of the spatial extent of the slit opening (horizontal black lines, inset). The full extent of the illumination (green) generates a 20-cycle THz waveform with a linewidth of 23.2±0.4  GHz at a 274 GHz central frequency, or a spectral purity of 8%, which rivals commercially available THz bandpass filters. The Gaussian profile of the pump is again responsible for the lower electric field values at early and late times. The minimum linewidth achieved is limited only by the number of lines etched in the sample shadow mask and by the size of the optical port etched in the aluminum tapered PPWG [Fig. 1(a)].

 

Fig. 4. Power spectrum and corresponding electric field time traces (inset) for varying spatial pump widths. The horizontal lines (inset) show the equivalent spatial pump width used to tune the number of cycles.

Download Full Size | PPT Slide | PDF

Numerical simulations were performed using commercially available FDTD software (Lumerical) to further understand the limitations of the technique. By tuning the plasma frequency, ωp, of a set of 12 lines of 20 μm width with a 160 μm period up to 19 THz, the reflected waveform is tuned from a multi-cycle to a single-cycle waveform [Fig. 5(a)]. In the scenario where the plasma frequency is significantly greater than the input THz pulse bandwidth, the transmission coefficient of individual lines t(ωp) becomes the limiting factor to the total number of pulses an array can contain. The reflected peak amplitude of the nth line in the array scales as En=E0·r·t2(n1), where E0 is the incident field amplitude and r(ωp) is the individual line reflection coefficient. The peak field reflection coefficient can reach up to 65% at ωp/2π=19  THz. Provided that r is of the order of 1%, as in our experiments, light can traverse the entire array and back without significant loss compared to the first line reflection. The spectral amplitude reflection (ERefl(ω,ωp)/ETrans(ω,0)) plotted in Fig. 5(b) shows the continuous transition between 1015 and 1018  cm3 electron density regimes. Vertical cuts in Fig. 5(b) show the corresponding reflection spectra in Fig. 5(c) for the datasets presented in Fig. 5(a). We can see that, as the plasma frequency reaches 10 THz (black line), a broadband background reflection becomes evident and even more pronounced as ωp reaches 19 THz (solid blue line). Transfer matrix calculations corresponding to a constant 25% field reflection off a single 20 μm thick photoinjected slab are shown in Fig. 5(b) by the dashed white curve. When the frequency is increased, higher plasma frequencies are required to achieve the same amount of reflection, as expected. The good agreement between this curve and the resonant peak roll-off from FDTD simulations confirms the Drude response of the media is responsible for the frequency dependence of the peak reflectivity and not disorder in the array.

 

Fig. 5. (a) Simulated (FDTD) reflected THz waveforms for 12 lines of 20 μm thickness with 160 μm period for indicated pump-induced plasma frequencies. (b) Reflected spectrum as a function of pump-induced plasma frequency (ERefl(ω,ωp)/ETrans(ω,0)). The white dashed line denotes the transfer matrix method solution for 25% field reflection from a single 20 μm line. (c) Reflected spectrum for fixed ωp values [from (b)].

Download Full Size | PPT Slide | PDF

Finally, each line in the photoexcited array can be independently addressed to individually modulate the replica pulses in the THz waveform. Thus, information can be encoded into the pulse train using binary 1s (pulse present) and 0s (pulse absent), as demonstrated in Fig. 6. The top-most waveform (purple) shows all eight field cycles in the “1” state, with subsequent data sets displaying binary sequences that spell “McGill” in 8-bit binary American Standard Code for Information Interchange (ASCII). The shadow mask has a 160 μm pitch with 20 μm wide lines and is pumped with 10 μJ pulse energy. Again, variations in peak field amplitudes, or gray-scaling, is caused by the inhomogeneous pump intensity distribution. For demonstration purposes, the array is limited to 8 cycles, or bits, though in the ωp/2π1  THz regime FDTD simulations indicate that 32 bits could be encoded with >35% peak fields ratio between the first and last electric field cycle due to the enhanced THz transmission on resonance [46] (see Supplement 1). It is worth noting that using a pump fluence that increases with the number of lines can help circumvent diminishing signals as the number of photoinjected lines increases. Furthermore, the high transmission ratio of this device enables recycling of the incident single-cycle pulse when operating in the non-depleting ωp/2π1  THz regime. By cascading these arrays it is then possible to generate multiple bit sequences from a single input pulse.

 

Fig. 6. 8-bit array of binary 1s (pulse present) and 0s (pulse absent) encoded in a THz pulse train. The pulse sequences presented here spell “McGill” in 8-bit binary ASCII characters. The 20 μm wide lines are photoinjected using a 10 μJ pump pulse with a lattice pitch of 160 μm.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

We have demonstrated temporal shaping of broadband THz light using spatially controlled photoinjected charge carriers inside a PPWG. THz waveforms were synthesized from of a single incident THz pulse using periodic one-dimensional arrays, creating frequency combs that are completely tunable in frequency, bandwidth, amplitude, and chirp. Moreover, individually addressing each line excitation in the array allows on–off keying of information onto a THz pulse train. In leveraging high peak field THz pulses, this platform can be used to arbitrarily tailor multi-cycle pulse sequences for quantum control schemes of meV scale excitations in matter, or to encode information for THz wireless transmission anywhere within the input bandwidth. The all-optical nature of this device makes it fully reversible and reconfigurable after charge-carrier recombination. This refresh rate could be pushed to the gigahertz range using direct bandgap semiconductors with shorter carrier lifetimes, such as GaAs, using two-photon excitation to ensure uniform illumination through the PPWG.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de Recherche du Québec—Nature et Technologies (FRQNT).

 

See Supplement 1 for supporting content.

REFERENCES

1. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008). [CrossRef]  

2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013). [CrossRef]  

3. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013). [CrossRef]  

4. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001). [CrossRef]  

5. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011). [CrossRef]  

6. S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012). [CrossRef]  

7. R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014). [CrossRef]  

8. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997). [CrossRef]  

9. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef]  

10. A. Paulsen and A. Nahata, “K-space design of terahertz plasmonic filters,” Optica 2, 214–220 (2015). [CrossRef]  

11. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, “Resonant metal-mesh bandpass-filters for the far-infrared,” Appl. Opt. 33, 6046–6052 (1994). [CrossRef]  

12. A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014). [CrossRef]  

13. N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003). [CrossRef]  

14. C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005). [CrossRef]  

15. H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005). [CrossRef]  

16. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef]  

17. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007). [CrossRef]  

18. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007). [CrossRef]  

19. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009). [CrossRef]  

20. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009). [CrossRef]  

21. S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012). [CrossRef]  

22. N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013). [CrossRef]  

23. N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014). [CrossRef]  

24. J. Li, “Terahertz modulator using photonic crystals,” Opt. Commun. 269, 98–101 (2007). [CrossRef]  

25. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010. [CrossRef]  

26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]  

27. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002). [CrossRef]  

28. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995). [CrossRef]  

29. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002). [CrossRef]  

30. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996). [CrossRef]  

31. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486–2496 (2003). [CrossRef]  

32. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013). [CrossRef]  

33. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]  

34. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012). [CrossRef]  

35. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multi-mJ pump energies,” Opt. Lett. 39, 4333–4336 (2014). [CrossRef]  

36. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16, 15123–15129 (2008). [CrossRef]  

37. D. G. Cooke and P. U. Jepsen, “Dynamic optically induced planar terahertz quasioptics,” Appl. Phys. Lett. 94, 241118 (2009). [CrossRef]  

38. L. Gingras, M. Georgin, and D. G. Cooke, “Optically induced mode coupling and interference in a terahertz parallel plate waveguide,” Opt. Lett. 39, 1807–1810 (2014). [CrossRef]  

39. L. Gingras, F. Blanchard, M. Georgin, and D. G. Cooke, “Dynamic creation of a light-induced terahertz guided-wave resonator,” Opt. Express 24, 2496–2504 (2016). [CrossRef]  

40. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003). [CrossRef]  

41. S.-H. Kim, E. S. Lee, Y. Bin Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18, 1289–1295 (2010). [CrossRef]  

42. C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015). [CrossRef]  

43. V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984). [CrossRef]  

44. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998). [CrossRef]  

45. L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006). [CrossRef]  

46. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008).
    [Crossref]
  2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
    [Crossref]
  3. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
    [Crossref]
  4. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
    [Crossref]
  5. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
    [Crossref]
  6. S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
    [Crossref]
  7. R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
    [Crossref]
  8. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
    [Crossref]
  9. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  10. A. Paulsen and A. Nahata, “K-space design of terahertz plasmonic filters,” Optica 2, 214–220 (2015).
    [Crossref]
  11. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, “Resonant metal-mesh bandpass-filters for the far-infrared,” Appl. Opt. 33, 6046–6052 (1994).
    [Crossref]
  12. A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
    [Crossref]
  13. N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
    [Crossref]
  14. C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005).
    [Crossref]
  15. H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
    [Crossref]
  16. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  17. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007).
    [Crossref]
  18. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
    [Crossref]
  19. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
    [Crossref]
  20. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref]
  21. S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
    [Crossref]
  22. N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
    [Crossref]
  23. N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
    [Crossref]
  24. J. Li, “Terahertz modulator using photonic crystals,” Opt. Commun. 269, 98–101 (2007).
    [Crossref]
  25. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
    [Crossref]
  26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  27. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref]
  28. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [Crossref]
  29. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
    [Crossref]
  30. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
    [Crossref]
  31. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486–2496 (2003).
    [Crossref]
  32. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
    [Crossref]
  33. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
    [Crossref]
  34. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
    [Crossref]
  35. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multi-mJ pump energies,” Opt. Lett. 39, 4333–4336 (2014).
    [Crossref]
  36. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16, 15123–15129 (2008).
    [Crossref]
  37. D. G. Cooke and P. U. Jepsen, “Dynamic optically induced planar terahertz quasioptics,” Appl. Phys. Lett. 94, 241118 (2009).
    [Crossref]
  38. L. Gingras, M. Georgin, and D. G. Cooke, “Optically induced mode coupling and interference in a terahertz parallel plate waveguide,” Opt. Lett. 39, 1807–1810 (2014).
    [Crossref]
  39. L. Gingras, F. Blanchard, M. Georgin, and D. G. Cooke, “Dynamic creation of a light-induced terahertz guided-wave resonator,” Opt. Express 24, 2496–2504 (2016).
    [Crossref]
  40. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
    [Crossref]
  41. S.-H. Kim, E. S. Lee, Y. Bin Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18, 1289–1295 (2010).
    [Crossref]
  42. C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
    [Crossref]
  43. V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
    [Crossref]
  44. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
    [Crossref]
  45. L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006).
    [Crossref]
  46. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
    [Crossref]

2016 (1)

2015 (2)

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

A. Paulsen and A. Nahata, “K-space design of terahertz plasmonic filters,” Optica 2, 214–220 (2015).
[Crossref]

2014 (5)

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

L. Gingras, M. Georgin, and D. G. Cooke, “Optically induced mode coupling and interference in a terahertz parallel plate waveguide,” Opt. Lett. 39, 1807–1810 (2014).
[Crossref]

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multi-mJ pump energies,” Opt. Lett. 39, 4333–4336 (2014).
[Crossref]

2013 (4)

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
[Crossref]

2012 (3)

S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
[Crossref]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

2011 (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

2010 (2)

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

S.-H. Kim, E. S. Lee, Y. Bin Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18, 1289–1295 (2010).
[Crossref]

2009 (3)

D. G. Cooke and P. U. Jepsen, “Dynamic optically induced planar terahertz quasioptics,” Appl. Phys. Lett. 94, 241118 (2009).
[Crossref]

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

2008 (2)

2007 (4)

L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007).
[Crossref]

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

J. Li, “Terahertz modulator using photonic crystals,” Opt. Commun. 269, 98–101 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

2006 (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006).
[Crossref]

2005 (2)

2003 (3)

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486–2496 (2003).
[Crossref]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[Crossref]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[Crossref]

2001 (1)

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

1998 (2)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

1997 (1)

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref]

1996 (1)

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
[Crossref]

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

1994 (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, “Resonant metal-mesh bandpass-filters for the far-infrared,” Appl. Opt. 33, 6046–6052 (1994).
[Crossref]

1984 (1)

V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
[Crossref]

Ahn, J.

Almási, G.

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Aoki, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486–2496 (2003).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Beggs, D. M.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Bin Ji, Y.

Blanchard, F.

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Bolduc, M.

Bonn, M.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

Born, N.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
[Crossref]

Bothe, K.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Brendel, R.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Busch, S. F.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chuang, I. L.

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref]

Cole, B. E.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

Cooke, D. G.

Crowe, T. W.

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Densing, R.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Dressel, M.

Duvillaret, L.

Efimov, A. V.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Federici, J.

Fekete, L.

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Field, R. W.

S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
[Crossref]

Fischer, B. M.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Fleischer, S.

S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Fujita, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Fülöp, J. A.

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Georgin, M.

Gershenfeld, N. A.

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref]

Giles, R. C.

Giles Davies, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Gingras, L.

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Gómez Rivas, J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Grivitskas, V.

V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
[Crossref]

Hafez, H.

Han, J.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Haring Bolivar, P.

Hebling, J.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[Crossref]

Hendry, E.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hesler, J. L.

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hisatake, S.

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Horiguchi, S.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Horvath, C.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Huber, R.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Ito, H.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[Crossref]

Janke, C.

Jansen, C.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Jeon, T.-I.

Jepsen, P. U.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

D. G. Cooke and P. U. Jepsen, “Dynamic optically induced planar terahertz quasioptics,” Appl. Phys. Lett. 94, 241118 (2009).
[Crossref]

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16, 15123–15129 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Juhasz, T.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Jukam, N.

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

Kadlec, F.

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Kampfrath, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Karsch, S.

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[Crossref]

Kim, S.-H.

King, B. T.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Klingebiel, S.

Koch, M.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
[Crossref]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Konishi, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Krabbe, A.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

Krauss, T. F.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Krausz, F.

Kröger, I.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Kuhl, J.

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[Crossref]

Kuipers, L.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

Kurz, H.

Kuwano, S.

Kuwata-Gonokami, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Kužel, P.

Lakhtakia, A.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[Crossref]

Lavrinenko, A. V.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

Lee, E. S.

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Li, J.

J. Li, “Terahertz modulator using photonic crystals,” Opt. Commun. 269, 98–101 (2007).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Lim, H. C.

Lim, S.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Liu, X.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Liu, Y.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
[Crossref]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

Loesel, F.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Lorenzen, D. L.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

MacDonald, D.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Mahto, P.

L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006).
[Crossref]

Makise, K.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Matsunaga, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Melloni, A.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Minamikata, Y.

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Möller, L.

Moloney, J. V.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

Morandotti, R.

Mourou, G.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Mueller, E. R.

Nagatsuma, T.

Nahata, A.

Nelson, K. A.

S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Nemec, H.

Nguyen, H. T.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Ozaki, T.

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Pálfalvi, L.

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Park, S.-G.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
[Crossref]

Pashkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
[Crossref]

Paulsen, A.

Peest, P. C.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Porterfield, D. W.

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Razavipour, H.

Reuter, M.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Ropagnol, X.

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

Scheller, M.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
[Crossref]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Schinke, C.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Schirmacher, A.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Schmidt, J.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Schumann, S.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

Sebastian, M. T.

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Sherwin, M. S.

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[Crossref]

Shimano, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Shiveshwari, L.

L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006).
[Crossref]

Sinyukov, A.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Stanley, C. R.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

Stepanov, A. G.

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[Crossref]

Strikwerda, A. C.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Sugioka, A.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Takahashi, H.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486–2496 (2003).
[Crossref]

Terada, J.

Terai, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

Tsuji, N.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Uzawa, Y.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Vaitkus, J.

V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
[Crossref]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Vogt, M. R.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Wang, Z.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

Weikle, R. M.

Weiner, A. M.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
[Crossref]

White, T. P.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Willander, M.

V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
[Crossref]

Williams, J. B.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

Winter, S.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Xie, C.

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Zalkovskij, M.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

AIP Adv. (1)

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104, 191103 (2014).
[Crossref]

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[Crossref]

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104, 103508 (2014).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[Crossref]

D. G. Cooke and P. U. Jepsen, “Dynamic optically induced planar terahertz quasioptics,” Appl. Phys. Lett. 94, 241118 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum (1)

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum 2, 709–719 (1996).
[Crossref]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[Crossref]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[Crossref]

J. Phys. D (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (3)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Nature (3)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref]

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Opt. Commun. (1)

J. Li, “Terahertz modulator using photonic crystals,” Opt. Commun. 269, 98–101 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

L. Gingras, M. Georgin, and D. G. Cooke, “Optically induced mode coupling and interference in a terahertz parallel plate waveguide,” Opt. Lett. 39, 1807–1810 (2014).
[Crossref]

L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008).
[Crossref]

L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007).
[Crossref]

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005).
[Crossref]

H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multi-mJ pump energies,” Opt. Lett. 39, 4333–4336 (2014).
[Crossref]

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38, 908–910 (2013).
[Crossref]

Optica (1)

Phys. Rev. A (1)

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A 81, 043837 (2010.
[Crossref]

Phys. Rev. B (2)

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[Crossref]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Phys. Rev. Lett. (2)

S. Fleischer, R. W. Field, and K. A. Nelson, “Commensurate two-quantum coherences induced by time-delayed THz fields,” Phys. Rev. Lett. 109, 123603 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Science (3)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345, 1145–1149 (2014).
[Crossref]

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref]

Solid State Commun. (1)

L. Shiveshwari and P. Mahto, “Photonic band gap effect in one-dimensional plasma dielectric photonic crystals,” Solid State Commun. 138, 160–164 (2006).
[Crossref]

Solid State Electron. (1)

V. Grivitskas, M. Willander, and J. Vaitkus, “The role of intercarrier scattering in excited silicon,” Solid State Electron. 27, 565–572 (1984).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       FDTD simulation results for a 32 cycle waveform

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic representation of the experimental setup. A single-cycle THz pulse (green) is coupled into a dielectric-filled parallel-plate waveguide and detected in reflection geometry. (b) An optically transparent ITO coating allows spatially defined charge carrier injection (dotted regions) using above-bandgap pulses of NIR light (light blue). The periodically repeating photoinjected metallic regions (dotted regions) partially reflect the incident THz pulse to generate a multi-cycle THz signal (red).
Fig. 2.
Fig. 2. (a) Typical input pulse (black) and reflected pulse replicas (red) for 20 μm wide pumped lines (w) with a lattice pitch (L) of 160 μm. Accompanying FDTD simulation results (blue) using the reference pulse shape as input. A digital sequence (111101) is created by photoexciting all lines but the fifth (inset). (b) (top) Incident electric field amplitude (black), synthesized frequency comb (red) and simulated signal (blue) for 12 photoinjected lines of 20 μm width (w) and 160 μm period (L). (b) (bottom) Spectral phase of the experimentally synthesized multi-cycle signal.
Fig. 3.
Fig. 3. Electric field time trace of the 12-line frequency combs and associated power spectrum (inset) for various lattice pitches (L) at constant pump energy (15 μJ) and line width (w=20  μm).
Fig. 4.
Fig. 4. Power spectrum and corresponding electric field time traces (inset) for varying spatial pump widths. The horizontal lines (inset) show the equivalent spatial pump width used to tune the number of cycles.
Fig. 5.
Fig. 5. (a) Simulated (FDTD) reflected THz waveforms for 12 lines of 20 μm thickness with 160 μm period for indicated pump-induced plasma frequencies. (b) Reflected spectrum as a function of pump-induced plasma frequency (ERefl(ω,ωp)/ETrans(ω,0)). The white dashed line denotes the transfer matrix method solution for 25% field reflection from a single 20 μm line. (c) Reflected spectrum for fixed ωp values [from (b)].
Fig. 6.
Fig. 6. 8-bit array of binary 1s (pulse present) and 0s (pulse absent) encoded in a THz pulse train. The pulse sequences presented here spell “McGill” in 8-bit binary ASCII characters. The 20 μm wide lines are photoinjected using a 10 μJ pump pulse with a lattice pitch of 160 μm.

Metrics