Abstract

Lithium niobate (LN) exhibits unique material characteristics that have found many important applications. Scaling LN devices down to a nanoscopic scale can dramatically enhance light–matter interaction that would enable nonlinear and quantum photonic functionalities beyond the reach of conventional means. However, developing LN-based nanophotonic devices turns out to be nontrivial. Although significant efforts have been devoted to this in recent years, the LN photonic crystal structures developed to date exhibit fairly low quality (Q). Here we demonstrate LN photonic crystal nanobeam resonators with optical Q as high as 105, more than two orders of magnitude higher than other LN photonic crystal nanocavities reported to date. The high optical Q, together with tight mode confinement, leads to an extremely strong nonlinear photorefractive effect, with a resonance tuning rate of 0.64  GHz/aJ, or equivalently 84  MHz/photon, three orders of magnitude greater than other LN resonators. In particular, we observed an intriguing quenching of photorefraction that has never been reported before. The devices also exhibit strong optomechanical coupling with a gigahertz nanomechanical mode with a significant f·Q product of 1.47×1012  Hz. The demonstration of high-Q LN photonic crystal nanoresonators paves a crucial step toward LN nanophotonics that could integrate the outstanding material properties with versatile nanoscale device engineering for diverse and intriguing functionalities.

© 2017 Optical Society of America

1. INTRODUCTION

Lithium niobate (LN) exhibits outstanding electro-optic, nonlinear optical, acousto-optic, piezoelectric, photorefractive, pyroelectric, and photoconductive properties [1] that have found very broad applications in telecommunication [2], nonlinear/quantum photonics [3,4], microelectromechanics [5,6], information storage [7,8], sensing [9], and many other areas [10]. Recently, there has been significant interest in developing LN photonic devices on chip-scale platforms [1130], which have shown a significant advantage in device engineering compared with conventional approaches. Miniaturization of device dimensions dramatically enhances the optical field in the devices, which enables a variety of nonlinear optical, quantum optical, and optomechanical functionalities. Among various approaches developed to date, the photonic crystal is probably one of the most efficient ones for light confinement [31], which has been demonstrated on a variety of material platforms [3134]. For LN, however, it remains an open challenge to achieve high optical quality (Q), primarily due to significant challenges in device fabrication [3545]. The LN photonic crystal nanocavities demonstrated to date generally exhibit low optical Q on the order of 100 [4244], which seriously limits their potential applications.

An alternative approach to get around the fabrication challenge is to fabricate waveguide structures on a different material deposited on top of a LN substrate to provide wave guidance while using LN as a cladding material [1416,2123,2527,30]. This approach, however, limits the extent of optical mode overlap with the LN layer as well as the design flexibility of the waveguide structure, due to the limitation of index contrast required between the waveguide material and the LN substrate.

In this paper, we demonstrate LN photonic crystal nanobeam resonators with optical Q up to 1.09×105, more than two orders of magnitude higher than any other LN photonic crystal nanocavities reported to date, to the best of our knowledge [3545]. The high optical Q, together with the tiny effective mode volume [1.03(λ/n)3], leads to an extremely strong nonlinear photorefractive effect, with a resonance tuning rate of 0.64  GHz/aJ, corresponding to 84  MHz/photon, three orders of magnitude greater than other LN resonators [46,47]. In particular, it enables us to observe the intriguing quenching of photorefraction, which has never been reported before. It also results in strong coupling between the optical cavity mode and the mechanical motion of the device structure, which allows us to sensitively probe the rich nanomechanical properties of the LN photonic crystal nanobeams up to 1  GHz. The demonstration of high-Q LN photonic crystal nanocavities paves a foundation toward LN nanophotonics that would elegantly combine the unique material properties of LN and versatile nanophotonic device design/fabrication, for broad nonlinear photonic, quantum photonic, optoelectronic, and optomechanical applications.

2. DEVICE DESIGN AND FABRICATION

Current plasma etching approaches for fabricating high-quality LN photonic devices generally produce a slant angle on the device sidewall [17,24]. Although it might help improve the optical Q of LN microresonators, it seriously impacts LN photonic crystals, which have a stringent requirement regarding the precision of device fine structures. To achieve high optical Q, we tailored our design to incorporate this slant angle into the structure of photonic crystals. Figure 1(a) shows the rectangular-shaped unit cell of the designed photonic crystal nanobeam [Fig. 1(c), inset], where the angles of the inside and outside sidewalls [Fig. 1(b)], θin=45° and θout=75°, respectively, are determined by the plasma etching process. The width W of the nanobeam, the layer thickness H, and the lattice constant a are the free parameters that we optimized to produce an optimal bandgap. Figure 1(c) shows the band diagram simulated by the finite element method, where a LN photonic crystal nanobeam with dimensions of W=750  nm and H=250  nm and a lattice constant of a=600  nm exhibits a bandgap of 28 THz, covering an optical frequency from 203 to 231 THz, for the transverse-electric-like (TE-like) polarization with the electric field dominantly lying in the device plane.

 

Fig. 1. Properties of the photonic band structure and defect cavity modes of the designed LN photonic crystal nanobeam. (a) Top view of the schematic of the unit cell of the photonic crystal nanobeam, (b) cross section of the unit cell, showing the inside and outside sidewall angles, (c) band structure of the designed photonic crystal nanobeam (red dotted curves). The green solid line corresponds to the light line. The pink region indicates the photonic bandgap, and the blue dot indicates the resonance frequency of the fundamental defect cavity mode. The inset in the lower-right corner shows the 3D schematic of the photonic crystal nanobeam, and that in the upper-left corner shows that of the unit cell. (d) Lattice constant as a function of position, which is optimized for a high radiation-limited optical Q; (e), (f) the optical mode field profiles of the fundamental (TE0) and second-order (TE1) TE-like cavity modes, with the electric field lying primarily in the device plane. The mode field profiles are simulated by the finite element method. Note that the horizontal axes of (e) and (f) have a different scale from that of (d).

Download Full Size | PPT Slide | PDF

To produce a defect cavity, we gradually decreased the lattice constant from 600 nm to 540 nm around the center of the nanobeam. We optimized the nanobeam with a pattern of lattice constants, as shown in Fig. 1(d), which results in a localized defect cavity at the center of the nanobeam whose fundamental cavity mode exhibits a resonance frequency close to the center of the photonic bandgap, as indicated by the blue dot in Fig. 2(c). Figures 1(e) and 1(f) show the optical mode field profiles of the fundamental (TE0) and second-order (TE1) TE-like cavity modes, simulated by the finite element method. The simulations show that the two modes exhibit radiation-limited optical Qs of 6.0×106 and 5.2×105, respectively, with effective mode volumes as small as 1.03(λ/n)3 and 1.80(λ/n)3 (where λ is the optical resonance wavelength and n is the refractive index).

 

Fig. 2. Over-etching process to produce the desired device structure. (a) Structure patterning on the ZEP mask by electron-beam lithography, (b) Ar-ion milling to produce a trapezoid-shaped cross section, (c) further Ar-ion milling to reduce the device layer thickness to form a triangular cross section, (d) undercutting of the buried oxide layer by diluted hydrofluoric acid.

Download Full Size | PPT Slide | PDF

Our devices were fabricated on a 300-nm-thick x-cut congruent single-crystalline LN thin film sitting on a 2-μm-thick buried oxide layer. The structure was patterned with ZEP-520A positive resist as a mask via electron-beam lithography [Fig. 2(a)] and was etched with the Ar-ion milling process [17,24]. We developed an over-etching process to produce desired fine structures and sidewall smoothness, as schematically shown in Figs. 2(b)2(d). During the beginning stage of etching, the Ar-ion milling process produces slant angles on the device sidewall, leading to a trapezoid-shaped cross section [Fig. 2(b)]. Further Ar-ion milling etched the ZEP-520A mask away and reduced the thickness of the LN layer to 250  nm, eventually forming a triangular cross section [Fig. 2(c)]. Finally, the buried oxide layer was undercut by diluted hydrofluoric acid to form a suspended photonic crystal nanobeam [Fig. 2(d)].

3. LINEAR OPTICAL PROPERTIES

Figures 3(a) and 3(b) show a fabricated device, which clearly shows smooth and well-defined fine features of the device structure. To characterize the optical property of the device, we launched a continuous-wave tunable laser into the device via evanescent coupling with a tapered optical fiber. Figure 3(c) shows the schematic of the experimental testing setup, where the optical wave transmitted out from the device is detected by a high-speed detector with a 3 dB bandwidth of 1.3 GHz, whose output is characterized by an oscilloscope or an electrical spectrum analyzer, depending on the measured contents. The laser wavelength is calibrated by a Mach–Zehnder interferometer.

 

Fig. 3. Fabricated device structure and experimental testing setup. (a) Scanning electron microscopic image of a fabricated LN photonic crystal nanobeam, (b) zoom-in image of a section of the photonic crystal nanobeam, (c) schematic of the experimental testing setup. MZI, Mach–Zehnder interferometer, used to calibrate the laser wavelength; VOA, variable optical attenuator; OSC, oscilloscope; ESA, electrical spectrum analyzer. The inset shows an optical microscopic image of a device coupled to a tapered optical fiber that is mechanically supported by two nanoforks fabricated nearby.

Download Full Size | PPT Slide | PDF

By scanning the laser wavelength over a broad telecom band and monitoring the power transmission from the device, we obtained the transmission spectrum of the device, shown in Fig. 4(a). Figure 4(a) shows that the device exhibits two high-Q optical resonances at 1452 and 1511 nm, which correspond to the fundamental and second-order cavity modes, respectively [Figs. 1(e) and 1(f)]. Detailed characterization of these two modes [Figs. 4(b) and 4(c)] shows that the TE0 and TE1 modes exhibit intrinsic optical Q as high as 1.09×105 and 1.08×105, respectively. These values are more than two orders of magnitude higher than other LN photonic crystal nanocavities that have been reported to date [3545]. As discussed in the previous section, the TE0 mode has a radiation-limited optical Q about one order of magnitude higher than the TE1 mode. Therefore, the similarity of optical Qs for these two modes in our devices infers that the optical Q of the devices is still limited by the scattering loss from the sidewall roughness, which can be improved by further optimization of device fabrication.

 

Fig. 4. Linear optical properties of LN photonic crystal nanocavities. (a) Laser-scanned transmission spectrum of a LN photonic crystal nanocavity. The two colors on the transmission spectrum indicate the spectral sections scanned by two lasers covering different spectral regions. (b), (c) Detailed transmission spectra of the fundamental (TE0) and second-order (TE1) cavity modes, respectively, with the experimental data shown in blue and the theoretical fitting shown in red, (d) cavity resonance wavelength as a function of lattice constant shift from the nominal values shown in Fig. 1(d). Note that when the lattice constant changes, all the lattice constants along the whole nanobeam change by the same amount. Different colors show cases of different nanobeam widths, varying by a step of 5 nm from the nominal value of W0=750  nm. The nanobeam thickness varies accordingly to keep the ratio W/H constant. The dots are experimental data, and the solid lines are linear fittings.

Download Full Size | PPT Slide | PDF

We are able to precisely control the device dimensions to tune the cavity resonance without degrading the optical Q, as shown in Fig. 4(d). On one hand, the cavity resonance depends nearly linearly on the lattice constant. By tuning the lattice constants by an amount between 20  nm and 20 nm in steps of 5 nm from the nominal values shown in Fig. 1(d), we are able to shift the cavity resonance wavelength in a linear fashion from 1480 nm to 1560 nm, by steps of about 10 nm [Fig. 4(d), black dots]. On the other hand, the cavity resonance is sensitive to the width and the thickness of the photonic crystal nanobeam. As shown in Fig. 4(d), a similar broadband tuning range for the cavity resonance can be obtained by simultaneously varying the width and the thickness of the photonic crystal nanobeam while keeping the ratio of W/H constant.

4. PHOTOREFRACTION AND ITS SATURATION AND QUENCHING

The high quality of the LN photonic crystal nanobeams enables us to observe intriguing nonlinear optical phenomena. Figure 5 shows an example. We scanned the laser wavelength across a cavity resonance back and forth in a periodic triangular fashion, and monitored the transmission of the device. When the input optical power increases from 330 nW to 8 μW, the transmission spectrum changes from a Lorentzian shape to a bistability-type shape, while the overall resonance wavelength shifts towards blue by about 55 pm [Fig. 5(a), Region I]. The bistability-type behavior is simply due to the thermo-optic nonlinearity that responds fairly rapidly to photothermal heating [48], which does not affect the overall position of the cavity resonance. The overall blueshift is a typical feature of the photorefractive effect, which originates from the electro-optic effect introduced by the space-charge electric field produced via photovoltaic drift current [49]. The slow relaxation of space charge distribution leads to a net decrease in the refractive index, which results in an overall blueshift of the cavity resonance [46,47,50].

 

Fig. 5. Laser-scanned cavity transmission spectra as a function of input power. (a) The input optical power increases from 330 nW to 41 μW (from top to bottom), is then maintained at 41 μW for 10  min (gray region), and (b) decreases from 41 μW back to 330 nW in (from top to bottom). The input power corresponding to each scanning spectrum is shown on the right. The laser wavelength is periodically scanned back and forth in a triangular fashion over a spectral range of 280 pm, with a scanning period of 100 ms. The cavity transmission spectra are shifted together along the vertical axis for convenient comparison. The color bars on the left illustrate three different regions. In Region I, the optical resonance is blueshifted with increased power; in Region II, the left edge of the optical resonance remains unchanged with increased power, as indicated by the red dashed line. In Region III, the left edge of the optical resonance remains unchanged with decreased power, as indicated by the blue dashed line. During the time period of constant input power (gray region) between Region II and III, the optical resonance redshifts back to its original location, as indicated by the black arrows. The gray dashed line indicates the central location of the optical resonance of the passive cavity in the absence of an optical wave.

Download Full Size | PPT Slide | PDF

As the linewidth of the loaded cavity resonance is about 15 pm with a coupling depth of 30% while the laser continuously scans over a tuning range of 280 pm, we estimate that the average optical power coupled into the cavity is 133  nW, which corresponds to an averaged energy of 11.5  aJ and an averaged photon number of only 87 inside the cavity. This results in a blue tuning rate of 0.64  GHz/aJ, corresponding to 84  MHz/photon or 55  GHz/μW, which is three orders of magnitude larger than those observed in millimeter-size LN resonators [46,47], clearly showing the dramatically enhanced nonlinear optical effect in the LN photonic crystal nanobeam. Such an energy-efficient resonance tuning has great potential for applications such as all-optical wavelength routing and photonic circuit reconfiguration, which are essential for photonic interconnect and optical data communication. Further characterization of the time response of photorefraction in the devices would help specify the application potential.

When the input power increases further from 8 μW to 41 μW [Fig. 5(a), Region II], although the thermo-optic bistability becomes more profound, as expected, the left edge of the cavity resonance stays at the same wavelength location, as indicated by the red dashed line in Fig. 5(a). This indicates that the overall cavity resonance wavelength remains unchanged, implying that the photorefraction saturates completely with increased power, in contrast to the photorefraction phenomena observed in other devices [46,47,50]. The underlying mechanism is likely due to the saturation of the generation of space charges responsible for photorefraction, since the extremely tiny physical size of the LN photonic crystal nanocavity leads to a limited number of donors/acceptors that can be excited by optical absorption to produce space charge carriers.

Of particular surprise is that when we maintain the periodic laser scanning of the cavity mode at an input power of 41 μW, the cavity resonance wavelength moves gradually by itself back to the original value of the passive cavity in the absence of optical power, as indicated by the arrows in Fig. 5. After this stage, the overall resonance remains unchanged at its passive value no matter how much optical power is launched into the device, as indicated by the blue dashed line in Fig. 5(b) showing the left edge of the cavity resonance. This indicates that the photorefraction is completely quenched by the optical wave launched into the device, which has never been observed before. At this state, no matter whether we decrease or increase the optical power, the phenomena remain the same as in Fig. 5(b), with the overall resonance wavelength nearly intact, except that the extent of the thermo-optic bistability varies with the optical power. Interestingly, the whole process is reversible. For example, after the photorefraction is quenched, if the device stays at rest for a few hours in the absence of an optical wave, it will recover to its original state and all the phenomena shown in Fig. 5, such as resonance blueshifting, saturation, and quenching of photorefraction, will reappear. The physical nature underlying the observed quenching phenomena is not clear at this moment, and requires further exploration. The quenching of photorefraction would be of great importance for nonlinear optical applications of LN nanophotonic devices, since photorefraction has been shown to be potentially detrimental to nonlinear optical processes [49,51].

5. NANO-OPTOMECHANICAL PROPERTIES

The high quality of LN photonic crystal nanobeams, together with tight optical mode confinement, results in strong coupling between the optical field inside the cavity and the mechanical motion of the device structure [52], which would enable us to probe the optomechanical properties of the device. To do so, we locked the laser wavelength halfway into the cavity resonance at the blue detuned side and monitored the power spectrum of the cavity transmission. The device was tested in the atmospheric environment at room temperature.

Figures 6(a) and 6(b) show the recorded power spectra of a device, revealing rich mechanical mode families extending over a broad frequency range. As shown in Fig. 6(a), the device exhibits a mechanical mode with a frequency at Ωm2π=1.003  GHz. Detailed characterization [Fig. 6(c)] shows that this mode exhibits an intrinsic mechanical Q of 1465, corresponding to an f·Q product of 1.47×1012  Hz, which is comparable to state-of-the-art LN micromechanical resonators [5,6,24,53]. We believe that the mechanical damping is dominated by clamping loss, as the device has not been engineered to isolate the mechanical mode from the environment. Numerical simulations show that this mechanical mode corresponds to a highly localized mode, as shown in the inset of Fig. 6(a), with an effective motion mass of meff=0.81  pg and a theoretical frequency of 1.099 GHz. A detailed comparison of the experimental spectrum with theory shows that this mode exhibits an optomechanical coupling coefficient of |gOM|2π=22  GH/nm, which corresponds to a single-photon/single-phonon optomechanical coupling rate of |go|2π=|gOM|2π2meffΩm=71  kHz. This value is similar to those observed in most other optomechanical crystals [5458], although our devices are not specifically designed for optomechanical applications. It is lower than those in the optimized optomechanical crystals reported in Refs. [59,60] that were optimized to enhance the photoelastic contribution. As LN exhibits outstanding acousto-optic properties [1], we expect that future optimization of device design would be able to significantly improve the optomechanical properties of the LN photonic crystal nanobeams.

 

Fig. 6. Nano-optomechanical properties of a LN photonic crystal nanobeam. (a), (b) Recorded power spectra of cavity transmission over different frequency regions. The insets show the mechanical displacement profiles of four labeled modes, simulated by the finite element method. The gray traces show the noise background of the detector. (c)–(f) Recorded spectra of the mechanical modes at 1.003 GHz, 1.71 MHz, 4.68 MHz, and 11.18 MHz, respectively, with experimental data shown in blue and theoretical fitting shown in red. The mechanical modes are labeled I–IV as in (a) and (b).

Download Full Size | PPT Slide | PDF

On the other hand, detailed characterization of low-frequency modes [Fig. 6(b)] shows that a majority of them exhibit low mechanical Q values on the order of 100, which is primarily due to air damping, since low-frequency mechanical modes exhibit large amplitudes of thermal mechanical motion, sensitive to air damping. Two examples are given in Figs. 6(d) and 6(e), where the modes at 1.71 MHz and 4.68 MHz exhibit mechanical Qs 80. Numerical simulations show that these two modes correspond to the first-order and second-order flexural modes [Fig. 6(b), insets II and III], respectively, with effective motional masses of 7.2 and 7.9 picograms. Comparison of the experimental spectra with theory shows that these two modes exhibit |gOM|2π=0.35 and 0.45 GHz/nm, respectively, corresponding to |go|2π=9.1 and 6.8 kHz. The small values of optomechanical coupling are primarily due to the nature of the mechanical modes [Fig. 6(b), inset II and III], which do not couple well with the optical cavity mode localized at the beam center. Figure 6(f) shows that a mechanical mode at 11.18 MHz shows a high mechanical Q of 6142, which is likely to be a high-order flexural mode [Fig. 6(b), inset IV] that is not as sensitive to air damping as other modes.

6. CONCLUSION AND DISCUSSION

In summary, we have demonstrated LN photonic crystal nanobeam resonators with an optical Q up to 105, which, to the best of our knowledge, is more than two orders of magnitude higher than other LN photonic crystal nanocavities reported to date [3545]. The devices exhibit an effective mode volume as small as 1.03(λ/n)3. The high optical Q, together with tight optical mode confinement, results in intriguing nonlinear optical phenomena. We have observed significant cavity resonance tuning induced by the photorefractive effect, with a tuning rate of 0.64  GHz/aJ, corresponding to 84  MHz/photon, three orders of magnitude greater than other LN resonators [46,47]. In particular, the devices exhibit strong saturation and quenching of photorefraction that has never been observed before. Photorefraction-induced optical damage is known to be detrimental to nonlinear optical processes in LN crystals [49,51], which has become a major obstacle to LN nonlinear photonics. The conventional approach to mitigate photorefraction is to dope the LN crystal with certain ions to increase the photorefraction threshold [51]. The strong saturation and quenching of photorefraction observed in our devices might offer an elegant solution to this problem, making LN nanophotonic devices particularly promising for nonlinear photonic applications.

On the other hand, the demonstrated devices exhibit strong coupling between the optical cavity modes and the mechanical motion of the device structures, with which we were able to characterize the rich nanomechanical motions of the device. We observed mechanical modes with frequencies up to 1.003 GHz with an f·Q product of 1.47×1012  Hz, which is comparable to state-of-the-art LN micromechanical devices [5,6,24,53]. The devices exhibit a single-photon/single-phonon optomechanical coupling rate of |go|2π=71  kHz that is similar to most other optomechanical crystals [5458], although our devices are not specifically designed for optomechanical applications. LN exhibits strong piezoelectric effect, electro-optic effect, and electromechanical coupling, significantly greater than other materials such as aluminum nitride and gallium arsenide [1,6,61]. Therefore, LN photonic crystals would offer a promising device platform that could achieve mutual strong coupling between electrical, optical, and mechanical degrees of freedom for various optoelectronic, optomechanical, and electromechanical applications.

Funding

National Science Foundation (NSF) (EFRI-1641099, ECCS-1509749, CCF-1533842); Defense Advanced Research Projects Agency (DARPA) SCOUT program (W31P4Q-15-1-0007); State Key Laboratory of Advanced Optical Communication Systems and Networks at Shanghai Jiao Tong University, China, Open Program (2016GZKF0JT001).

Acknowledgment

This study was performed in part at the Cornell NanoScale Science and Technology Facility (CNF), a member of the National Nanotechnology Infrastructure Network.

REFERENCES

1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]  

2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000). [CrossRef]  

3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]  

4. M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007). [CrossRef]  

5. M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009). [CrossRef]  

6. S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013). [CrossRef]  

7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef]  

8. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]  

9. L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004). [CrossRef]  

10. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004). [CrossRef]  

11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007). [CrossRef]  

12. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012). [CrossRef]  

13. T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012). [CrossRef]  

14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013). [CrossRef]  

15. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014). [CrossRef]  

16. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014). [CrossRef]  

17. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014). [CrossRef]  

18. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015). [CrossRef]  

19. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015). [CrossRef]  

20. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015). [CrossRef]  

21. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015). [CrossRef]  

22. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015). [CrossRef]  

23. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016). [CrossRef]  

24. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016). [CrossRef]  

25. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016). [CrossRef]  

26. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017). [CrossRef]  

27. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017). [CrossRef]  

28. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nanostructured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017). [CrossRef]  

29. R. Luo, H. Jiang, H. Liang, Y. Chen, and Q. Lin, “Self-referenced temperature sensing with a lithium niobate microdisk resonator,” Opt. Lett. 42, 1281–1284 (2017). [CrossRef]  

30. J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017). [CrossRef]  

31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

32. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007). [CrossRef]  

33. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008). [CrossRef]  

34. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]  

35. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005). [CrossRef]  

36. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006). [CrossRef]  

37. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006). [CrossRef]  

38. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009). [CrossRef]  

39. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010). [CrossRef]  

40. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010). [CrossRef]  

41. N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011). [CrossRef]  

42. H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012). [CrossRef]  

43. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013). [CrossRef]  

44. R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014). [CrossRef]  

45. L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39, 2094–2096 (2014). [CrossRef]  

46. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006). [CrossRef]  

47. M. Leidinger, C. S. Werner, W. Yoshiki, K. Buse, and I. Breunig, “Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes,” Opt. Lett. 41, 5474–5477 (2016). [CrossRef]  

48. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef]  

49. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer, 2006).

50. X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017). [CrossRef]  

51. Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012). [CrossRef]  

52. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014). [CrossRef]  

53. R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015). [CrossRef]  

54. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009). [CrossRef]  

55. M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014). [CrossRef]  

56. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013). [CrossRef]  

57. A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016). [CrossRef]  

58. M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, and M. Lončar, “Diamond optomechanical crystals,” Optica 3, 1404–1412 (2016). [CrossRef]  

59. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012). [CrossRef]  

60. K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016). [CrossRef]  

61. S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  4. M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
    [Crossref]
  5. M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
    [Crossref]
  6. S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013).
    [Crossref]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [Crossref]
  8. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [Crossref]
  9. L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004).
    [Crossref]
  10. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
    [Crossref]
  11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [Crossref]
  12. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  13. T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
    [Crossref]
  14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
    [Crossref]
  15. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  16. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  17. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  18. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref]
  19. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  20. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref]
  21. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
    [Crossref]
  22. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
    [Crossref]
  23. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
    [Crossref]
  24. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
    [Crossref]
  25. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  26. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
    [Crossref]
  27. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
    [Crossref]
  28. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nanostructured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref]
  29. R. Luo, H. Jiang, H. Liang, Y. Chen, and Q. Lin, “Self-referenced temperature sensing with a lithium niobate microdisk resonator,” Opt. Lett. 42, 1281–1284 (2017).
    [Crossref]
  30. J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
    [Crossref]
  31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  32. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
    [Crossref]
  33. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
    [Crossref]
  34. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [Crossref]
  35. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
    [Crossref]
  36. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006).
    [Crossref]
  37. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [Crossref]
  38. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
    [Crossref]
  39. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
    [Crossref]
  40. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
    [Crossref]
  41. N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011).
    [Crossref]
  42. H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
    [Crossref]
  43. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
    [Crossref]
  44. R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
    [Crossref]
  45. L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39, 2094–2096 (2014).
    [Crossref]
  46. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
    [Crossref]
  47. M. Leidinger, C. S. Werner, W. Yoshiki, K. Buse, and I. Breunig, “Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes,” Opt. Lett. 41, 5474–5477 (2016).
    [Crossref]
  48. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  49. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer, 2006).
  50. X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017).
    [Crossref]
  51. Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
    [Crossref]
  52. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  53. R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
    [Crossref]
  54. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [Crossref]
  55. M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
    [Crossref]
  56. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
    [Crossref]
  57. A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
    [Crossref]
  58. M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, and M. Lončar, “Diamond optomechanical crystals,” Optica 3, 1404–1412 (2016).
    [Crossref]
  59. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
    [Crossref]
  60. K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
    [Crossref]
  61. S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
    [Crossref]

2017 (6)

2016 (7)

M. Leidinger, C. S. Werner, W. Yoshiki, K. Buse, and I. Breunig, “Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes,” Opt. Lett. 41, 5474–5477 (2016).
[Crossref]

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, and M. Lončar, “Diamond optomechanical crystals,” Optica 3, 1404–1412 (2016).
[Crossref]

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

2015 (6)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
[Crossref]

2014 (7)

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39, 2094–2096 (2014).
[Crossref]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

2013 (4)

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

2012 (5)

Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
[Crossref]

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
[Crossref]

2011 (1)

2010 (3)

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

2009 (4)

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
[Crossref]

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[Crossref]

2008 (1)

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
[Crossref]

2007 (3)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

2006 (3)

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

2005 (1)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

2004 (3)

L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004).
[Crossref]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1998 (1)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

1995 (1)

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Aid, M.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Andrade, N.

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[Crossref]

Arrangoiz-Arriola, P.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Ates, S.

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Atikian, H. A.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Baida, F.

Baida, F. I.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

Ballandras, S.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Balram, K. C.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref]

Beberatos, A.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

Bernal, M.-P.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

Bhattacharjee, K.

R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
[Crossref]

Bhave, S. A.

R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
[Crossref]

Bo, F.

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Bosenberg, W. R.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bowers, J. E.

Breunig, I.

Burek, M. J.

Buse, K.

Byer, R. L.

Cai, L.

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

Camacho-González, G. F.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Carmon, T.

Chan, J.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

Chang, L.

Chen, L.

Chen, Y.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Chia, C.

Chiles, J.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Clavelier, L.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Cleland, A. N.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Cohen, J. D.

Collet, M.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

Courjal, N.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

Cui, J.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Dahdah, J.

N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

Davanco, M.

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Davanco, M. I.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Defay, E.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Deguet, C.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

DeRose, C. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Diziain, S.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Eckardt, R. C.

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

El-Sawah, N.

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Fan, L.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Fathpour, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Fejer, M. M.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Gao, F.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Geiss, R.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Gisin, N.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Gong, S.

S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013).
[Crossref]

Grange, R.

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

Gu, M.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Guichardaz, B.

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Guo, G.-C.

Halder, M.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Han, H.

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

He, J.-Y.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref]

Hill, J. T.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Hu, H.

Huang, I.-C.

Hugonin, J. P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Jiang, H.

Jiang, W. C.

Jiang, Y.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Khan, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Kippenberg, T. J.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Kley, E.-B.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Koechlin, M.

Kong, Y.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lalanne, P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
[Crossref]

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Lee, C.-A.

Leidinger, M.

Lentine, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Li, J.

Li, S.

Li, W.

Li, Y.

Liang, H.

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Lin, Q.

Lin, Z.

Liu, S.

Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
[Crossref]

Liu, Y.

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Loncar, M.

Loubriat, S.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Lu, H.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

Lukin, M. D.

Luo, R.

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Malinowski, M.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Manganelli, C. L.

Markham, M.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Mateti, K.

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Meenehan, S.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Meenehan, S. M.

Meesala, S.

Mercier, D.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Mookherjea, S.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Moriceau, H.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Myers, L. E.

Niu, H.

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

Ozdemir, S. K.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Painter, O.

M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, and M. Lončar, “Diamond optomechanical crystals,” Optica 3, 1404–1412 (2016).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

Peairs, G. A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Pertsch, T.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Peters, J.

Peters, J. D.

Pfeiffer, M. H. P.

Piazza, G.

S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013).
[Crossref]

Pierce, J. W.

Pijolat, M.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Psaltis, D.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Queste, S.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Rabiei, P.

Rao, A.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Reano, R. M.

Reindl, L. M.

L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004).
[Crossref]

Reinhardt, A.

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

Ren, X.-F.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Rochman, J.

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

Ruelle, T.

Safavi-Naeini, A. H.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Sarabalis, C. J.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Saravi, S.

Satzinger, K. J.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Sauvan, C.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
[Crossref]

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Scarani, V.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Schrempel, F.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Schuck, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Sergeyev, A.

Setzpfandt, F.

Sevillano, P.

Shrena, I. M.

L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004).
[Crossref]

Simon, C.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Song, J. D.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Srinivasan, K.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Stanton, E. J.

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Stark, P.

Steinert, M.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Strekalov, D.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Sulser, F.

Sun, X.

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Tadigadapa, S.

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[Crossref]

Tang, H. X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Toroghi, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Tünnermann, A.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Twitchen, D. J.

Ulliac, G.

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Vainsencher, A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Valery, J. A.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Venkataraman, V.

Volet, N.

Wan, S.

Wang, C.

Wang, J.

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Wang, K.

Wang, L.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Wang, R.

R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
[Crossref]

Wang, T.-J.

Wang, Y.

Weigel, P. O.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Werner, C. S.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Witmer, J. D.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Wood, M. G.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Xiong, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Xiong, X.

Xu, J.

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
[Crossref]

Xu, Q.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Yang, L.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yoshiki, W.

Zbinden, H.

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Zervas, M.

Zhang, G.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

Zhang, S.

Zhang, X.-C.

Zhou, G.

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Adv. Mater. (1)

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27, 8075–8081 (2015).
[Crossref]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. Lett. (12)

M. Pijolat, S. Loubriat, S. Queste, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, L. Clavelier, H. Moriceau, M. Aid, and S. Ballandras, “Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer,” Appl. Phys. Lett. 95, 182106 (2009).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010).
[Crossref]

H. Lu, F. I. Baida, G. Ulliac, N. Courjal, M. Collet, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: realization of a compact electro-optically tunable filter,” Appl. Phys. Lett. 101, 151117 (2012).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

M. Davanco, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Trans. Microw. Theory Tech. 61, 403–414 (2013).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

L. M. Reindl and I. M. Shrena, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1457–1463 (2004).
[Crossref]

J. Microelectromech. Sys. (1)

R. Wang, S. A. Bhave, and K. Bhattacharjee, “Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators,” J. Microelectromech. Sys. 24, 300–308 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev. 2, 514–526 (2008).
[Crossref]

Materials (1)

Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5, 1954–1971 (2012).
[Crossref]

Meas. Sci. Technol. (1)

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[Crossref]

Nat. Photonics (3)

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystal and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electrio-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Nat. Phys. (1)

M. Halder, A. Beberatos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Nature (2)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

Opt. Express (10)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017).
[Crossref]

N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components,” Opt. Express 19, 23008–23016 (2011).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nanostructured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
[Crossref]

Opt. Lett. (6)

Optica (4)

Phys. Rev. B (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Phys. Stat. Sol. A (2)

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Stat. Sol. A 211, 2421–2425 (2014).
[Crossref]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[Crossref]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Rep. (4)

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Properties of the photonic band structure and defect cavity modes of the designed LN photonic crystal nanobeam. (a) Top view of the schematic of the unit cell of the photonic crystal nanobeam, (b) cross section of the unit cell, showing the inside and outside sidewall angles, (c) band structure of the designed photonic crystal nanobeam (red dotted curves). The green solid line corresponds to the light line. The pink region indicates the photonic bandgap, and the blue dot indicates the resonance frequency of the fundamental defect cavity mode. The inset in the lower-right corner shows the 3D schematic of the photonic crystal nanobeam, and that in the upper-left corner shows that of the unit cell. (d) Lattice constant as a function of position, which is optimized for a high radiation-limited optical Q ; (e), (f) the optical mode field profiles of the fundamental (TE0) and second-order (TE1) TE-like cavity modes, with the electric field lying primarily in the device plane. The mode field profiles are simulated by the finite element method. Note that the horizontal axes of (e) and (f) have a different scale from that of (d).
Fig. 2.
Fig. 2. Over-etching process to produce the desired device structure. (a) Structure patterning on the ZEP mask by electron-beam lithography, (b) Ar-ion milling to produce a trapezoid-shaped cross section, (c) further Ar-ion milling to reduce the device layer thickness to form a triangular cross section, (d) undercutting of the buried oxide layer by diluted hydrofluoric acid.
Fig. 3.
Fig. 3. Fabricated device structure and experimental testing setup. (a) Scanning electron microscopic image of a fabricated LN photonic crystal nanobeam, (b) zoom-in image of a section of the photonic crystal nanobeam, (c) schematic of the experimental testing setup. MZI, Mach–Zehnder interferometer, used to calibrate the laser wavelength; VOA, variable optical attenuator; OSC, oscilloscope; ESA, electrical spectrum analyzer. The inset shows an optical microscopic image of a device coupled to a tapered optical fiber that is mechanically supported by two nanoforks fabricated nearby.
Fig. 4.
Fig. 4. Linear optical properties of LN photonic crystal nanocavities. (a) Laser-scanned transmission spectrum of a LN photonic crystal nanocavity. The two colors on the transmission spectrum indicate the spectral sections scanned by two lasers covering different spectral regions. (b), (c) Detailed transmission spectra of the fundamental (TE0) and second-order (TE1) cavity modes, respectively, with the experimental data shown in blue and the theoretical fitting shown in red, (d) cavity resonance wavelength as a function of lattice constant shift from the nominal values shown in Fig. 1(d). Note that when the lattice constant changes, all the lattice constants along the whole nanobeam change by the same amount. Different colors show cases of different nanobeam widths, varying by a step of 5 nm from the nominal value of W 0 = 750    nm . The nanobeam thickness varies accordingly to keep the ratio W / H constant. The dots are experimental data, and the solid lines are linear fittings.
Fig. 5.
Fig. 5. Laser-scanned cavity transmission spectra as a function of input power. (a) The input optical power increases from 330 nW to 41 μW (from top to bottom), is then maintained at 41 μW for 10    min (gray region), and (b) decreases from 41 μW back to 330 nW in (from top to bottom). The input power corresponding to each scanning spectrum is shown on the right. The laser wavelength is periodically scanned back and forth in a triangular fashion over a spectral range of 280 pm, with a scanning period of 100 ms. The cavity transmission spectra are shifted together along the vertical axis for convenient comparison. The color bars on the left illustrate three different regions. In Region I, the optical resonance is blueshifted with increased power; in Region II, the left edge of the optical resonance remains unchanged with increased power, as indicated by the red dashed line. In Region III, the left edge of the optical resonance remains unchanged with decreased power, as indicated by the blue dashed line. During the time period of constant input power (gray region) between Region II and III, the optical resonance redshifts back to its original location, as indicated by the black arrows. The gray dashed line indicates the central location of the optical resonance of the passive cavity in the absence of an optical wave.
Fig. 6.
Fig. 6. Nano-optomechanical properties of a LN photonic crystal nanobeam. (a), (b) Recorded power spectra of cavity transmission over different frequency regions. The insets show the mechanical displacement profiles of four labeled modes, simulated by the finite element method. The gray traces show the noise background of the detector. (c)–(f) Recorded spectra of the mechanical modes at 1.003 GHz, 1.71 MHz, 4.68 MHz, and 11.18 MHz, respectively, with experimental data shown in blue and theoretical fitting shown in red. The mechanical modes are labeled I–IV as in (a) and (b).

Metrics