Abstract

Strong coherent interactions between colocalized optical and mechanical eigenmodes of various cavity optomechanical systems have been explored intensively toward quantum information processing using both photons and phonons. In contrast to localized modes, propagating mechanical waves are another form of phonons that can be guided and manipulated like photons in engineered phononic structures. Here, we demonstrate sideband-resolved coupling between multiple photonic nanocavities and propagating surface acoustic waves up to 12 GHz. Coherent and strong photon–phonon interaction is manifested with electro-optomechanically induced transparency, absorption, and amplification, and phase-coherent interaction in multiple cavities. Inside an echo chamber, it is shown that a phonon pulse can interact with an embedded nanocavity for multiple times. Our device provides a scalable platform to optomechanically couple phonons and photons for microwave photonics and quantum photonics.

© 2015 Optical Society of America

1. INTRODUCTION

Strong coherent interactions between colocalized optical and mechanical eigenmodes of various cavity optomechanical systems have been explored intensively toward quantum information processing using both photons and phonons [15]. To achieve this, optomechanically induced transparency (OMIT) [68], backaction cooling [9,10], and light squeezing [11,12] have been demonstrated. To this end, the optomechanical interaction between the localized mechanical modes and confined optical modes of the cavity system is exploited to obtain strong photon–phonon coupling. In contrast to localized motion, however, the more ubiquitous form of phonons are various types of mechanical waves that freely propagate in the bulk or on the surface of solids. Propagating mechanical waves can strongly interact with light through elasto-optic effects and have been utilized in various acousto-optic devices [13,14]. In optical fibers [1518] and more recently in integrated waveguides [1923] and in whispering-gallery-mode cavities [2427], mechanical waves can also be stimulated optically and lead to strong Brillouin scattering between phase-matched optical modes. Much like photons, these mechanical waves, or itinerant phonons, can be confined and guided in planar phononic waveguides to propagate over long distances so that their coupling with photonic modes are highly scalable [2830]. Furthermore, phononic crystals and cavities can also be implemented to confine and store phonons to achieve an extended lifetime [3133]. The quantum nature of those itinerant mechanical states has been revealed recently [34].

While both propagating and localized mechanical modes can be stimulated optically, they can be more efficiently excited electromechanically so that the amplitude or number of phonons can be pumped to a very high level without the need of a strong pump laser. Such an approach has been employed in electro-optomechanical systems that can directly couple microwave signals with optical signals [3537]. Mechanical waves can also be excited with electromechanical transducers in monolithic devices. Representative types of mechanical waves include bulk acoustic waves, Rayleigh surface acoustic waves (SAWs), Lamb waves, and flexural plate waves. Rayleigh SAWs are particularly interesting because the displacement is confined on the surface of the substrate and it can be conveniently excited with planar transducers. Acoustic wave devices have long been applied for wireless communication and signal-processing applications [38,39]. In quantum physics, single quanta of a SAW have been detected with single-electron transistors and superconducting qubits, manifesting that propagating phonons can be viable quantum information carriers [34,40]. In photonics, we showed previously that a microwave frequency SAW can efficiently modulate photonic waveguide modes [41]. In this work, we present a new type of cavity optomechanical system consisting of high-Q photonic crystal nanocavities integrated with SAW transducers working at frequencies up to 12 GHz, entering the microwave Ku band. At this very high frequency, the optomechanical interaction in the new system reaches the sideband-resolved regime and enables electro-optomechanically induced transparency, absorption, and amplification. To establish the propagating feature of mechanical waves, we demonstrate the phase-coherent optomechanical modulation of multiple nanocavities and an echo chamber inside which an acoustic pulse travels for multiple roundtrips to interact with an embedded nanocavity.

2. DEVICE DESIGN AND EXPERIMENTS

A. Device Design and Characterizations

Both the photonic crystal nanocavities and the SAW transducers are integrated on a 330 nm thick aluminum nitride (AlN) film, which provides strong piezoelectricity for efficient excitation of SAWs and a high refractive index for optical confinement. As illustrated in Fig. 1(a), the nanocavity is formed in a nanobeam inscribed with a one-dimensional photonic crystal shallow-etched in the AlN layer. The nanocavity can be coupled with a waveguide either on the side or at the ends. An interdigital transducer (IDT) is configured to launch a SAW propagating in the transverse direction to the nanobeam. The aperture of the IDT (100 μm) is designed to be much larger than the mode size of the nanocavity with a 24 μm FWHM of the Gaussian intensity profile, as shown in Fig. 1(b). Therefore, the nanocavity undergoes approximately uniform deformation when the acoustic wave passes. The wavelength of the acoustic wave that is excited is determined by the period of the IDT, whereas the frequencies of the modes are strongly dependent on their dispersion properties in the multilayer substrate. The scanning electron microscope image in Fig. 1(c) shows the IDT electrodes with a period of 450 nm and a linewidth of 112.5 nm (see Appendix A for details of the fabrication methods.) To achieve a high optical quality factor and a strong optomechanical interaction, we optimized the photonic crystal nanocavity design such that the electric field of the fundamental dielectric mode [42] is well confined inside the AlN structures with an effective mode index of neff1.54. (The design of the photonic crystal nanocavity is discussed in Supplement 1).

 

Fig. 1. (a) 3D illustration of the device configuration, featuring the IDT and the excited SAW propagating in the transverse direction to the nanobeam photonic crystal nanocavity. (b) Optical microscope image of a device. The nanocavity is side-coupled to a waveguide connected with two grating couplers. (c) Scanning electron microscope image of the nanobeam cavity side-coupled to a waveguide (green) and the IDT (yellow). The linewidth of the IDT fingers is 112.5 nm. (d) Transmission spectrum measured from the nanocavity showing the fundamental (at 1529.7 nm) and the first-order (at 1538.3 nm) resonance modes. (e) Zoom-in of the fundamental resonance of the nanocavity, showing a linewidth of 3.88 GHz. (f) Spectrum of de-embedded and normalized reflection coefficient S11 of the SAW IDT. High-order Rayleigh modes from R11 to R16 can be observed as resonance dips. Inset: simulated displacement field of the R14 mode, showing that the displacement is more confined in the top AlN layer. For clarity, the displacement field profile is rescaled and truncated. (g) Zoom-in of the normalized S11 spectrum of the R14 mode plotted in a linear scale, showing a linewidth of 38.9 MHz.

Download Full Size | PPT Slide | PDF

Figure 1(d) displays the measured transmission spectrum of the nanocavity side-coupled with a waveguide, showing the fundamental and first-order cavity modes as dips. The quality factor of the waveguide-loaded fundamental mode is 5×104, corresponding to a linewidth of κ=(2π)·3.88GHz [Fig. 1(e)]. To characterize the SAW modes, the reflection coefficient (S11) of the IDT was measured with a vector network analyzer (VNA) and is plotted in Fig. 1(f). (Detailed descriptions of the measurement setup are provided in Appendix B.) When an acoustic wave is excited, the reflection spectrum also shows a negative peak as the microwave signal is converted to outgoing waves so less reflected. Prominent resonance peaks corresponding to high-order Rayleigh modes, as marked in Fig. 1(f), can be observed in the reflection spectrum. These high-order modes are more interesting than the low-order modes because mechanical energy is more confined in the AlN layer rather than in SiO2 so that their overlap with the cavity optical mode is more significant, inducing a stronger optomechanical coupling [41]. The inset in Fig. 1(f) shows the simulated mode profile of Rayleigh mode R14 with more than 20% mechanical energy confined in the AlN layer. Its frequency is Ω14=(2π)·12.1GHz, entering the microwave Ku band. The linewidth of the mode resonance is Γ14=(2π)·38.9MHz [Fig. 1(g)]. We note that one feature of our platform is that the electromechanical transducer is separated from the photonic cavity, allowing the mechanical frequency to be freely engineered and the photonic cavity to be optimized independently. (More simulation results of the SAW modes are included in Supplement 1).

B. Sideband-resolved Optomechanical Coupling

To characterize the optomechanical coupling between the nanocavity and the SAWs, a laser source, with a variable detuning from the fundamental cavity mode, was sent into the input waveguide with 22 μW power. The transmitted optical power was measured with a high-speed photodetector (PD), which was connected to the VNA and the overall system transmission coefficient S21 was measured as a function of the excitation frequency at the IDT. The broadband optical S21 spectrum is shown in Fig. 2(a). It can be seen that in addition to the Rayleigh modes (R11–R16) observable in S11, optical S21 also detects additional modes (R4–R10) that are not visible in the S11 spectrum. A comparison of the two spectra demonstrates that the high-Q nanocavity provides optical detection of acoustic waves with a broader bandwidth and a higher sensitivity. The amplitudes of the S21 peaks are proportional to the modal overlaps of the Rayleigh modes with the cavity mode. Figure 2(b) shows a zoom-in of the S11 and S21 of the R14 mode. Since the frequency of the mechanical mode [Ω12=(2π)·12.1GHz] is considerably greater than the dissipation rate of the nanocavity mode κ=(2π)·3.88GHz, their optomechanical coupling is in the sideband-resolved regime, a prerequisite condition for phenomena such as induced transparency and strong coupling. Figure 2(c) shows the S21 peak amplitude of the R14 mode as a function of varying laser-cavity detuning, displaying the characteristic line shape of sideband-resolved cavity optomechanical coupling. Fitting the results with the theoretical model and calibrating the transducing factors of the system provide the optomechanical coupling coefficient of the system, G=(2π)·53GHz/nm, expressed in terms of the power of the SAW as (2π)·23MHz/μW1/2. (More details are provided in Supplement 1).

 

Fig. 2. (a) Spectrum of the system transmission coefficient S21 (red line) in a linear scale, measured using optical detection with the nanocavity and electromechanical excitation of the SAW. Rayleigh modes (R4–R10) not visible in the reflection spectrum (gray line) can be detected with high sensitivity by the nanocavity. (b) Zoom-in of the reflection and transmission spectra of the R14 mode [inside the yellow box in panel (a)]. (c) Amplitude (peak value) of the oscillating optical power at the S21 peak of the R14 mode when the laser detuning relative to the cavity resonance is varied. The data (red symbols) are fitted with the theoretical model (blue line) of the cavity optomechanical system in the sideband-resolved regime (see Supplement 1 for details).

Download Full Size | PPT Slide | PDF

C. Electro-optomechanically Induced Transparency, Absorption, and Amplification by a SAW

Coherent interactions between cavity photons and propagating phonons generate Stokes and anti-Stokes photons, which can interfere with probe photons constructively (destructively) to induce optical transparency (absorption). This three-wave nonlinear process is illustrated in the diagram in Fig. 3(a). Different from optically stimulated phonons in conventional cavity optomechanics and stimulated Brillouin scattering in optical fibers, here the phonons are electromechanically excited nonlocally and are propagating on the surface. We investigate the coherent photon–phonon interaction in our system using the setup depicted in Fig. 3(b). Briefly, a laser is detuned from the cavity resonance by exactly the SAW mode frequency (ΩSAW) to provide the control light at a frequency of ωc and is modulated with an electro-optic modulator to generate sidebands, with the upper one at a frequency of ωp=ωc+Δp used as the probe light. With this scheme, the transmission spectrum of the cavity can be measured by varying the modulation frequency to scan ωp and by detecting the beating signal between the transmitted probe light and the control light.

 

Fig. 3. (a) Diagram illustrating the three-wave mixing process of the control (ωc), probe (ωp), and SAWs (ΩSAW). The cavity resonance frequency is ω0 with a decay rate of κ. (b) The homodyne measurement scheme used in the experiment. The probe light is derived from the control light when the latter is modulated at frequency of Δp, which is scanned to obtain the transmission spectrum. (VNA, vector network analyzer; PS, power splitter; PD, photodetector; EOM, electro-optic modulator; TGA, tunable gain amplifier; ϕ, phase shifter; BPF, bandpass filter.) (c) Transmission spectrum of the probe light when the SAW is off (gray symbols) and on (red, blue symbols). Cavity absorption is shown as a dip in the light gray region. When the SAW-induced anti-Stokes light is in-phase with the probe, constructive interference leads to transparency and gain as shown by the peak above unity transmission (the light blue region). When the anti-Stokes light is π out-of-phase with the probe, destructive interference enhances cavity absorption (the light gray region), leading to a high extinction of the probe. (d) Gain of the system in the transparency window when the SAW power is increasing (orange, 0.33 μW; olive, 0.66 μW; purple, 1.3 μW; green, 2.6 μW; red, 5.2 μW). (e) Transmitted probe light when the phase shift ϕ is set at 0 (red), π/2 (green), π (blue), and 3π/2 (purple). When the phase is at π/2 and 3π/2, the line shapes imitate those of Fano resonances. (f) The dependence of the system gain on the SAW power. The red symbols are experimental data, whereas the black curve is the theoretical fitting.

Download Full Size | PPT Slide | PDF

The result is displayed by gray symbols in Fig. 3(c), showing a transmission dip, which can be understood as cavity absorption. When the modulation signal is also sent to drive the IDT, a SAW of the same frequency is excited and propagates to the nanocavity to couple with the control light. This optomechanical coupling leads to three-wave mixing between the control, probe, and SAW. Depending on the SAW phase, which can be controlled with a phase shifter, the interference of waves leads to transparency or absorption. When the interference is constructive (destructive), a transparency (absorption) window is observed within the cavity resonance, shown as a red peak (blue dip) in Fig. 3(c). Because in this homodyne measurement scheme the mechanical frequency and the probe detuning are synchronized, the transparency (absorption) window width agrees with the SAW IDT bandwidth [Fig. 2(b)]. Fixing the control light power, the SAW can be excited to a high amplitude to compensate for the cavity loss and even to amplify the probe light with a considerable gain, as shown in Fig. 3(d). When the gain is high, and so the original cavity absorption is negligible, it is proportional to the SAW power (or the number of propagating phonons), as shown in Fig. 3(f). In addition to transparency or absorption, the three-wave mixing process is controlled by the phase of the SAW relative to the probe. The columns in Fig. 3(e) show the situations when the phase shift ϕ is set to 0, π/2, π, and 3π/2, so that the interference is tuned from constructive to destructive and displays Fano-resonance-like line shapes in between. We note that in our system SAW electro-optomechanically induces transparency and absorption [35,36], which is different from OMIT where mechanical motion is stimulated optically [6,7].

D. Coherent SAW Interaction with Multiple Cavities

Besides the phenomena observable in sideband-resolved cavity optomechanics, an important feature of our new platform is that the propagating mechanical wave can interact with multiple cavities in a coherent fashion. This scalability will be important, for example, to wavelength-multiplexed coupling and conversion between microwave and optical photons. We demonstrate scalability by placing three nanocavities in the path of the SAW as shown in Fig. 4(a). These cavities are end-coupled with the waveguides and the SAW transducers operate at a lower frequency of 1.75 GHz. As the beam of SAW propagates, it also undergoes diffraction, which can be described by integrating the Lamb’s point source solution along all the IDT finger pairs [43], each of which is treated as an effective line source. Overlaid in Fig. 4(a) is the calculated displacement field amplitude of the propagating SAW, showing its diffraction pattern. Counterintuitively, as shown in Fig. 4(b), the displacement amplitude of the SAW changes nonmonotonically along the central line of the IDT where the nanocavities lie. This is confirmed in the optical S21 spectra measured from the three cavities, as shown in Fig. 4(c), in which the farthest cavity (1.5 mm from the IDT) shows almost equally strong modulation as the second cavity (0.5 mm from the IDT). On the other hand, the phases of the optomechanical modulation of the three cavities are coherent with incremental time delays due to the propagation of the SAW. The group delay as a function of the distance of the three cavities from the IDT transducers is plotted in Fig. 4(d). The slope in the plot indicates the group velocity of the SAW to be 4.0km/s. The coupling demonstrated between multiple cavities and the SAW with well-understood diffraction can be utilized to implement multiplexed microwave signal processing in the optical domain.

 

Fig. 4. (a) Optical image of a device with three nanocavities in the path of SAW propagation. The photonic cavities are end-coupled with the waveguides and the SAW operates at a lower frequency of 1.75 GHz. Overlaid on the image is the calculated amplitude distribution of the diffraction pattern of the SAW. (b) The calculated displacement amplitude along the center line of the SAW beam, showing nonmonotonic variation along the propagation direction. The symbols are the S21 magnitude measured from the three nanocavities. The dashed line is the eαr/r1/2 asymptote of the far-field amplitude of the wave for comparison, where α is the material loss assumed to be (1.5mm)1. (c) |S21| spectra measured from the three nanocavities at distances of 0, 0.5, and 1.5 mm from the IDT. (d) Group delay of the three cavities’ responses to the SAW as a function of their distances from the IDT. The inverse of the slope gives a group velocity of 4.0km/s.

Download Full Size | PPT Slide | PDF

E. SAW Interaction with a Cavity in an Acoustic Echo Chamber

Finally, propagating phonons can be guided and confined in a fashion much like photons, with phononic structures such as one- or two-dimensional phononic crystals. Here we use acoustic Bragg reflectors to build a planar phononic cavity, or an acoustic echo chamber, inside which a photonic nanocavity is inserted to enable cavity-enhanced photon–phonon interaction. An optical image of the device is displayed in Fig. 5(a). Figure 5(b) shows the optical S21 spectra measured with the nanocavities inside phononic cavities of different lengths of D=0.3, 0.6, and 0.9 mm. The spectra show additional peaks within the IDT bandwidth, corresponding to the acoustic resonances of the phononic cavity. Similarly to an optical Fabry–Perot cavity, the spacing between the peaks, or the free spectral range, ΔΩ, decreases with increasing cavity length as given by ΔΩ=2π/T=πc/(D+d), where T is the roundtrip time, c is the group velocity of the SAW, and d is the effective extra cavity length due to the Bragg reflectors. The nanocavity provides highly sensitive and broadband detection of the acoustic wave traveling inside the echo chamber. By performing a time-domain measurement, we show that the nanocavity can “hear” multiple echoes of an acoustic pulse bouncing inside the chamber, as displayed in Fig. 5(c). The acoustic pulse is first excited by a 40 ns microwave burst sent to the IDT (orange). Due to electrical and optical delay, after 160ns, the pulse was detected by the nanocavity for the first time. The pulse then propagates back and forth between the reflector and the IDT. It passes and is detected by the nanocavity four times, as is most obvious in the top panel, before its amplitude decays below the noise floor. From the arrival times and signal amplitudes of multiple echoes, shown in Figs. 5(d) and 5(e), we can observe that other than linear propagation delay and loss, an extra delay of 100 ns (corresponding to d=200μm) and a loss of 8 dB occur during each roundtrip. Those are attributed to the Bragg reflector of finite length and can be optimized with a more advanced design of low-loss phononic reflectors.

 

Fig. 5. (a) Optical image of the device. The distance between the IDT and the Bragg reflector is D. (b) |S21| spectra of devices with varying lengths D of the phononic cavities (red, green, blue lines), compared with a device without the Bragg reflector (black line). The spectra show peaks corresponding to the resonances of the phononic cavity with decreasing peak spacing (or free spectral range) when the cavity length is increased. (c) Time-domain echo measurement of an acoustic pulse traveling inside phononic cavities of varying lengths D. The light-colored traces are 20 times magnifications of the dark-colored traces. The acoustic pulse is excited by a 40 ns long burst of microwaves at 1.75 GHz (orange). Up to four echoes of the pulse can be detected by the nanocavity. (d) The arrival time and (e) the amplitude of the detected echoes as a function of the apparent travel distance of the acoustic pulse. The red dashed lines are guides for the eyes assuming (d) a constant group velocity of 4.0km/s and (e) exponential loss. The data deviate from the linear propagation due to extra delay (0.1μs) and loss (8dB) at the Bragg reflectors of finite length.

Download Full Size | PPT Slide | PDF

3. CONCLUSION

In conclusion, we have demonstrated a planar cavity optomechanical platform on which propagating acoustic waves can be generated, confined, and guided to interact with photonic cavities integrated in the same layer of AlN. By using high-resolution electron-beam lithography, IDTs can be patterned to excite acoustic waves at frequencies into the microwave Ku band. We expect it to be straightforward to further increase the frequency by using more advanced nanofabrication techniques such as nanoimprint lithography. In addition to high frequency, an important feature of a propagating mechanical wave is its scalability—multiple photonic cavities can be coupled. In contrast to other cavity optomechanical systems that include a mechanical resonator, the SAW in our current system is freely propagating and is not confined in a high-Q cavity. As a result, prominent optomechanical backaction effects such as optical spring, cooling, and amplification cannot be achieved with such an open SAW system. However, high-Q acoustic cavities can be obtained if the acoustic loss can be reduced by removing substrate leakage, reducing diffraction via acoustic waveguides [32,44], and suppressing intrinsic material loss at cryogenic temperatures [45]. More recently, a SAW cavity with a quality factor of up to 105 has been demonstrated at a cryogenic temperature [33]. Therefore, it is promising to achieve photon–phonon interaction in the regime of strong coupling on a SAW-based platform as a scalable modality of quantum optomechanics.

APPENDIX A: DEVICE FABRICATION

The devices were fabricated from a c-axis oriented, 330 nm thick piezoelectric AlN thin film sputtered (OEM Group, AZ) on a silicon wafer with a 3 μm buried silicon dioxide layer. The photonics layer was first patterned by electron-beam lithography (Vistec EBPG-5000+) using ZEP-520A resist followed by chlorine-based reactive-ion etching. The AlN layer was etched down by 200 nm, leaving a 130 nm thick AlN slab for the SAW to propagate without significant reflection and loss. The SAW IDT electrodes and contact pads were fabricated by electron-beam lithography, followed by 35 nm Ti/Au deposition and a liftoff process.

APPENDIX B: MEASUREMENT SETUP

An external cavity tunable semiconductor laser was used as the laser source with its output power stabilized using a feedback loop. A 20 GHz electro-optic power modulator (EOM) was used to generate the probe sidebands for the observation of electro-optomechanically induced transparency, absorption, and amplification. The laser (and the probe sidebands, if present) was further conditioned with a fiber polarization controller and a variable optical attenuator before being coupled into and out of the photonic crystal nanocavity via the on-chip grating couplers and waveguides. The output laser from the nanocavity was amplified with an erbium-doped fiber amplifier, filtered with an optical tunable bandpass filter, and measured with a high-speed PD (New Focus 1474-A).

In frequency-domain measurement, a VNA (Agilent E8362B) was used to measure the frequency response of the system. For S11 measurement, VNA Port 1 was directly connected to the on-chip IDT through an RF probe. For S21 measurements, the RF power output from VNA Port 1 was split into two paths with an RF power splitter. One path was connected to the on-chip IDT through the RF probe. The other path was connected to the EOM to generate the optical probe sidebands only for the measurement of SAW-induced transparency, absorption, and amplification. For all other measurements, the latter path was disconnected and the EOM did not modulate the input laser. Both paths were properly conditioned with RF amplifiers, tunable attenuators, and/or tunable delay lines used as phase shifters. The output from the PD was amplified before being sent into VNA Port 2. In time-domain measurements, RF bursts were generated by gating a continuous-wave RF source with a pulse generator and a high-speed RF switch. The RF source and the pulse generator were properly synchronized to minimize phase jitter, which was crucial to ensure excellent identicalness of all the RF bursts. The RF bursts generated were sent to the on-chip IDT through the RF probe. The output of the PD was amplified and measured with an oscilloscope, which was synchronously triggered by the pulse generator. To achieve a high signal-to-noise ratio, the device responses shown in Fig. 5 were averaged for 2 s.

Funding

Air Force Office of Scientific Research (AFOSR) (FA9550-12-1-0338); National Science Foundation (NSF) (ECCS-1307601).

Acknowledgment

We thank Dr. Changling Zou for helpful discussions.

 

See Supplement 1 for supporting content.

REFERENCES

1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef]  

2. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]  

3. S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003). [CrossRef]  

4. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011). [CrossRef]  

5. K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011). [CrossRef]  

6. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]  

7. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]  

8. M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013). [CrossRef]  

9. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef]  

10. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011). [CrossRef]  

11. D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012). [CrossRef]  

12. A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013). [CrossRef]  

13. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).

14. A. Korpel, Acousto-optics (Marcel Dekker, 1997).

15. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972). [CrossRef]  

16. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985). [CrossRef]  

17. P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991). [CrossRef]  

18. M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010). [CrossRef]  

19. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013). [CrossRef]  

20. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson III, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

21. J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014). [CrossRef]  

22. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015). [CrossRef]  

23. M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015). [CrossRef]  

24. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009). [CrossRef]  

25. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012). [CrossRef]  

26. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011). [CrossRef]  

27. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

28. M. M. de Lima Jr. and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005). [CrossRef]  

29. M. M. de Lima Jr., Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

30. V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008). [CrossRef]  

31. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004). [CrossRef]  

32. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009). [CrossRef]  

33. E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015). [CrossRef]  

34. M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014). [CrossRef]  

35. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013). [CrossRef]  

36. K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014). [CrossRef]  

37. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011). [CrossRef]  

38. S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, 1986).

39. C. Campbell, Surface Acoustic Wave Devices and their Signal Processing Applications (Academic, 1989).

40. M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012). [CrossRef]  

41. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014). [CrossRef]  

42. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011). [CrossRef]  

43. A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002). [CrossRef]  

44. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004). [CrossRef]  

45. A. El Habti, “High-frequency surface acoustic wave devices at very low temperature: application to loss mechanisms evaluation,” J. Acoust. Soc. Am. 100, 272–277 (1996). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  2. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
    [Crossref]
  3. S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
    [Crossref]
  4. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
    [Crossref]
  5. K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
    [Crossref]
  6. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  7. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  8. M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
    [Crossref]
  9. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  10. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref]
  11. D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
    [Crossref]
  12. A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
    [Crossref]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).
  14. A. Korpel, Acousto-optics (Marcel Dekker, 1997).
  15. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [Crossref]
  16. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  17. P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
    [Crossref]
  18. M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
    [Crossref]
  19. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  20. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
  21. J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
    [Crossref]
  22. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  23. M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
    [Crossref]
  24. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  25. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
    [Crossref]
  26. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
    [Crossref]
  27. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
  28. M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
    [Crossref]
  29. M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).
  30. V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
    [Crossref]
  31. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
    [Crossref]
  32. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
    [Crossref]
  33. E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
    [Crossref]
  34. M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
    [Crossref]
  35. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
    [Crossref]
  36. K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
    [Crossref]
  37. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
    [Crossref]
  38. S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, 1986).
  39. C. Campbell, Surface Acoustic Wave Devices and their Signal Processing Applications (Academic, 1989).
  40. M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
    [Crossref]
  41. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
    [Crossref]
  42. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref]
  43. A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002).
    [Crossref]
  44. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
    [Crossref]
  45. A. El Habti, “High-frequency surface acoustic wave devices at very low temperature: application to loss mechanisms evaluation,” J. Acoust. Soc. Am. 100, 272–277 (1996).
    [Crossref]

2015 (4)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

2014 (4)

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

2013 (5)

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

2012 (3)

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

2011 (8)

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref]

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[Crossref]

2010 (3)

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

2009 (3)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[Crossref]

2008 (2)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

2005 (1)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

2004 (2)

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

2003 (1)

S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
[Crossref]

2002 (1)

A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002).
[Crossref]

1996 (1)

A. El Habti, “High-frequency surface acoustic wave devices at very low temperature: application to loss mechanisms evaluation,” J. Acoust. Soc. Am. 100, 272–277 (1996).
[Crossref]

1991 (1)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

1972 (1)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Adibi, A.

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Arcizet, O.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Ardavan, A.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Aref, T.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

Aspelmeyer, M.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Awschalom, D. D.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Bahl, G.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Bawaj, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Benchabane, S.

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

Beugnot, J. C.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Biancofiore, C.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Bochmann, J.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Børkje, K.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[Crossref]

Botter, T.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Bouwmeester, D.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Brahms, N.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Brenn, A.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

Brooks, D. W.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Buttner, T. F.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Campbell, C.

C. Campbell, Surface Acoustic Wave Devices and their Signal Processing Applications (Academic, 1989).

Cantarero, A.

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Chan, C. T.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Choi, D. Y.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Choujaa, A.

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Cleland, A. N.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Cowan, M. L.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Culverhouse, D.

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

Datta, S.

S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, 1986).

de Lima, M. M.

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

Deleglise, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Delsing, P.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

Di Giuseppe, G.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Djafari-Rouhani, B.

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

Dong, C.-H.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Eftekhar, A. A.

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

Eggleton, B. J.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Ekstrom, M. K.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

El Habti, A.

A. El Habti, “High-frequency surface acoustic wave devices at very low temperature: application to loss mechanisms evaluation,” J. Acoust. Soc. Am. 100, 272–277 (1996).
[Crossref]

Fan, L. R.

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Farahi, F.

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

Fong, K. Y.

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Fuhrmann, D. A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Galassi, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Gavartin, E.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Gerard, D.

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

Girvin, S. M.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[Crossref]

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[Crossref]

Groblacher, S.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Guo, G.-C.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Gustafsson, M. V.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

Han, X.

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Hunt, W. D.

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Jerez-Hanckes, C. F.

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

Jiang, L.

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Johansson, G.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

Kabakova, I. V.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Kang, M. S.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

Karuza, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Khelfaoui, N.

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

Khelif, A.

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

Kim, H.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Kockum, A. F.

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

Korpel, A.

A. Korpel, Acousto-optics (Marcel Dekker, 1997).

Kosevich, Y. A.

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Krenner, H. J.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Laude, V.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

Lebrun, S.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Leek, P. J.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Li, M.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Liu, Z.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Loncar, M.

Luther-Davies, B.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Madden, S. J.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Magnusson, E. B.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Maillotte, H.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Mancini, S.

S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
[Crossref]

Manenti, R.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[Crossref]

Merklein, M.

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Mohammadi, S.

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

Molinelli, C.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Nagy, P. B.

A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002).
[Crossref]

Nam, M.-S.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Natali, R.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Nersisyan, A.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Nunnenkamp, A.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[Crossref]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Page, J. H.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Pant, R.

Pauliat, G.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Peterer, M. J.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Petroff, P. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Poulton, C. G.

Purdy, T. P.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Quan, Q.

Rakich, P. T.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Riviere, R.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Ruiz, A.

A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002).
[Crossref]

Russell, P. St.J.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Santos, P. V.

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

Schliesser, A.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Schreppler, S.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shen, Z.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Sheng, P.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Shin, H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Stamper-Kurn, D. M.

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Stolen, R. H.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Sylvestre, T.

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Tadesse, S. A.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

Tang, H. X.

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Thon, S. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Tombesi, P.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
[Crossref]

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Vainsencher, A.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Vitali, D.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
[Crossref]

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

Weis, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Williams, B. H.

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Wixforth, A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Yang, S.

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Zhang, Y.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Zou, C.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (5)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

V. Laude, D. Gerard, N. Khelfaoui, C. F. Jerez-Hanckes, S. Benchabane, and A. Khelif, “Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer,” Appl. Phys. Lett. 92, 094104 (2008).
[Crossref]

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009).
[Crossref]

E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek, “Surface acoustic wave devices on bulk ZnO crystals at low temperature,” Appl. Phys. Lett. 106, 063509 (2015).
[Crossref]

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 4400–4402 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

J. Acoust. Soc. Am. (2)

A. El Habti, “High-frequency surface acoustic wave devices at very low temperature: application to loss mechanisms evaluation,” J. Acoust. Soc. Am. 100, 272–277 (1996).
[Crossref]

A. Ruiz and P. B. Nagy, “Diffraction correction for precision surface acoustic wave velocity measurements,” J. Acoust. Soc. Am. 112, 835–842 (2002).
[Crossref]

Nat. Commun. (6)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. Buttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).

J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Nat. Photonics (2)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Nat. Phys. (3)

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys. 8, 338–343 (2012).
[Crossref]

Nature (5)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

New J. Phys. (1)

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

Opt. Express (1)

Phys. Rev. A (2)

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

K. Y. Fong, L. R. Fan, L. Jiang, X. Han, and H. X. Tang, “Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems,” Phys. Rev. A 90, 051801(R) (2014).
[Crossref]

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Phys. Rev. Lett. (6)

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[Crossref]

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90, 137901 (2003).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

M. M. de Lima, Y. A. Kosevich, P. V. Santos, and A. Cantarero, “Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid,” Phys. Rev. Lett. 104, 165502 (2010).

Physics (1)

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[Crossref]

Rep. Prog. Phys. (1)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

Science (3)

M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207–211 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Other (4)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).

A. Korpel, Acousto-optics (Marcel Dekker, 1997).

S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, 1986).

C. Campbell, Surface Acoustic Wave Devices and their Signal Processing Applications (Academic, 1989).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1467 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) 3D illustration of the device configuration, featuring the IDT and the excited SAW propagating in the transverse direction to the nanobeam photonic crystal nanocavity. (b) Optical microscope image of a device. The nanocavity is side-coupled to a waveguide connected with two grating couplers. (c) Scanning electron microscope image of the nanobeam cavity side-coupled to a waveguide (green) and the IDT (yellow). The linewidth of the IDT fingers is 112.5 nm. (d) Transmission spectrum measured from the nanocavity showing the fundamental (at 1529.7 nm) and the first-order (at 1538.3 nm) resonance modes. (e) Zoom-in of the fundamental resonance of the nanocavity, showing a linewidth of 3.88 GHz. (f) Spectrum of de-embedded and normalized reflection coefficient S11 of the SAW IDT. High-order Rayleigh modes from R11 to R16 can be observed as resonance dips. Inset: simulated displacement field of the R14 mode, showing that the displacement is more confined in the top AlN layer. For clarity, the displacement field profile is rescaled and truncated. (g) Zoom-in of the normalized S11 spectrum of the R14 mode plotted in a linear scale, showing a linewidth of 38.9 MHz.
Fig. 2.
Fig. 2. (a) Spectrum of the system transmission coefficient S21 (red line) in a linear scale, measured using optical detection with the nanocavity and electromechanical excitation of the SAW. Rayleigh modes (R4–R10) not visible in the reflection spectrum (gray line) can be detected with high sensitivity by the nanocavity. (b) Zoom-in of the reflection and transmission spectra of the R14 mode [inside the yellow box in panel (a)]. (c) Amplitude (peak value) of the oscillating optical power at the S21 peak of the R14 mode when the laser detuning relative to the cavity resonance is varied. The data (red symbols) are fitted with the theoretical model (blue line) of the cavity optomechanical system in the sideband-resolved regime (see Supplement 1 for details).
Fig. 3.
Fig. 3. (a) Diagram illustrating the three-wave mixing process of the control (ωc), probe (ωp), and SAWs (ΩSAW). The cavity resonance frequency is ω0 with a decay rate of κ. (b) The homodyne measurement scheme used in the experiment. The probe light is derived from the control light when the latter is modulated at frequency of Δp, which is scanned to obtain the transmission spectrum. (VNA, vector network analyzer; PS, power splitter; PD, photodetector; EOM, electro-optic modulator; TGA, tunable gain amplifier; ϕ, phase shifter; BPF, bandpass filter.) (c) Transmission spectrum of the probe light when the SAW is off (gray symbols) and on (red, blue symbols). Cavity absorption is shown as a dip in the light gray region. When the SAW-induced anti-Stokes light is in-phase with the probe, constructive interference leads to transparency and gain as shown by the peak above unity transmission (the light blue region). When the anti-Stokes light is π out-of-phase with the probe, destructive interference enhances cavity absorption (the light gray region), leading to a high extinction of the probe. (d) Gain of the system in the transparency window when the SAW power is increasing (orange, 0.33 μW; olive, 0.66 μW; purple, 1.3 μW; green, 2.6 μW; red, 5.2 μW). (e) Transmitted probe light when the phase shift ϕ is set at 0 (red), π/2 (green), π (blue), and 3π/2 (purple). When the phase is at π/2 and 3π/2, the line shapes imitate those of Fano resonances. (f) The dependence of the system gain on the SAW power. The red symbols are experimental data, whereas the black curve is the theoretical fitting.
Fig. 4.
Fig. 4. (a) Optical image of a device with three nanocavities in the path of SAW propagation. The photonic cavities are end-coupled with the waveguides and the SAW operates at a lower frequency of 1.75 GHz. Overlaid on the image is the calculated amplitude distribution of the diffraction pattern of the SAW. (b) The calculated displacement amplitude along the center line of the SAW beam, showing nonmonotonic variation along the propagation direction. The symbols are the S21 magnitude measured from the three nanocavities. The dashed line is the eαr/r1/2 asymptote of the far-field amplitude of the wave for comparison, where α is the material loss assumed to be (1.5mm)1. (c) |S21| spectra measured from the three nanocavities at distances of 0, 0.5, and 1.5 mm from the IDT. (d) Group delay of the three cavities’ responses to the SAW as a function of their distances from the IDT. The inverse of the slope gives a group velocity of 4.0km/s.
Fig. 5.
Fig. 5. (a) Optical image of the device. The distance between the IDT and the Bragg reflector is D. (b) |S21| spectra of devices with varying lengths D of the phononic cavities (red, green, blue lines), compared with a device without the Bragg reflector (black line). The spectra show peaks corresponding to the resonances of the phononic cavity with decreasing peak spacing (or free spectral range) when the cavity length is increased. (c) Time-domain echo measurement of an acoustic pulse traveling inside phononic cavities of varying lengths D. The light-colored traces are 20 times magnifications of the dark-colored traces. The acoustic pulse is excited by a 40 ns long burst of microwaves at 1.75 GHz (orange). Up to four echoes of the pulse can be detected by the nanocavity. (d) The arrival time and (e) the amplitude of the detected echoes as a function of the apparent travel distance of the acoustic pulse. The red dashed lines are guides for the eyes assuming (d) a constant group velocity of 4.0km/s and (e) exponential loss. The data deviate from the linear propagation due to extra delay (0.1μs) and loss (8dB) at the Bragg reflectors of finite length.

Metrics