Abstract

Miniaturized tunable lasers are important as light sources in optical networks and sensing systems. However, challenges remain in realizing a low-cost on-chip tunable laser with high tuning accuracy and wide tuning range. Here, an external-cavity tunable laser integrated by using a pair of coupled-ring resonators as a reflector onto a single silicon chip is designed and demonstrated. The silicon coupled-ring reflector provides simultaneous tuning of the central reflective wavelength and the free spectral range of the entire cavity to guarantee phase matching. The effective optical length of the coupled-ring reflector is controlled by the complementary thermo-optic and free-carrier dispersion effects, thus enabling high-resolution wavelength fine-tuning while maintaining wide wavelength tuning range. Experimentally, the tunable laser has high external-cavity efficiency (22%) and high wavelength tuning accuracy (2 pm) throughout the 41.6 nm tuning range. Potential applications of the external-cavity tunable laser include optical networks, optical sensing, and on-chip optoelectronic systems.

© 2015 Optical Society of America

Miniaturized wavelength tunable lasers have attracted great interest, functioning as light sources in optical networks and sensing systems. To achieve a large tuning range, external cavity tunable lasers are used, which basically integrate a gain medium with one or more tunable “mirrors” in the external cavity [1]. The tunable mirrors could be realized on multiple platforms, i.e., III–V, polymer, silica, and silicon [15]. Among all these possibilities, silicon is particularly promising for tunable lasers, benefiting from the high refractive index, cost efficiency, and compatibility for mass production. Based on the silicon platform, microelectromechanical systems (MEMS) technology has been used for external-cavity tunable diode lasers to minimize laser size and improve stability [68]. However, the employment of a free-space external cavity leads to large optical loss due to beam divergence, deteriorating cavity efficiency to below 10%, and degrading the output power and the side-mode-suppression ratio (SMSR).

Nano-silicon-photonic circuits have been utilized for guiding light in external-cavity tunable lasers [911]. Wavelength selective silicon-photonic elements, such as ring resonators, gratings, and Mach–Zehnder interferometers, have been continuously developed [12,13]. Among these elements, ring resonators are superior for a tunable laser due to their narrow resonance bandwidth and high quality factor [14,15]. Two InP-based ring resonators are separated at different sides of the gain section in a tunable laser to serve as wavelength filters [16]. To avoid gain absorption at the filtering section, the ring resonators have been positioned at the same side of the gain section [17]. However, such wavelength filters do not provide a reflective function, thus creating a need for additional mirror/reflective facets. A pair of mutually coupled-ring resonators has been proposed as a wavelength selective reflector [18]. However, such a reflector lacks tunability and suffers from high optical loss. The relatively low transmission loss (0.5–1.5 dB/cm) of a nano-silicon waveguide is perfect for high external-cavity efficiency. The thermo-optic effect was adopted for efficient refractive index tuning in silicon ring resonators [19]. However, this effect is easily affected by environmental temperature fluctuation with limited tuning accuracy and speed (submicrosecond). In complement, the free-carrier dispersion effect, which enables independence from temperature fluctuations with improved tuning accuracy and high tuning speed, can be applied.

In this Letter, a pair of coupled-ring resonators acting as a reflector to form the external cavity of an integrated silicon-photonic tunable laser is demonstrated. This is, to our best knowledge, the first demonstration of a silicon coupled-ring reflector controlled by complementary wavelength tuning schemes, providing high external-cavity efficiency (22%) and flexible wavelength tuning of the laser. The thermo-optic effect enables a wide 40 nm wavelength tuning range, and the free-carrier dispersion effect ensures fine-tuning with 2 pm accuracy. This high tuning accuracy is critical for enhancing tunable laser performance, such as output power and the SMSR.

Figure 1(a) shows the schematic of the monolithic external-cavity tunable laser. It consists of a gain chip as the internal cavity and a pair of coupled-ring resonators connected with the gain chip through the nano-silicon bus waveguide in the external cavity. The coupled-ring tunable resonators serve as a reflector, replacing one cleaved facet in the conventional Fabry–Perot laser. The reflectivity is controllable by adjusting properties such as the radii, the effective refractive index, and the coupling coefficients ring–ring and bus–ring. Ring resonator 1 (Ring 1), with a refractive index that is thermally adjustable for potential continuous wavelength tuning, serves as the reference ring. Ring resonator 2 (Ring 2) is used to control the lasing wavelength. A p-i-n junction is formed across Ring 2, and a microheater is patterned on top of the ring waveguide and isolated by a SiO2 layer. The specific wavelength that meets the resonance of both ring resonators, which is also the lasing wavelength, has the highest reflectivity. The wavelength is tuned by controlling the effective refractive index of the ring waveguide. The gain chip and the nano-silicon photonic circuits are optically connected by a nano-silicon inversed taper waveguide to obtain mode-size matching. The equivalent cavity model is illustrated in Fig. 1(b). The gain chip forms the internal cavity with a cavity length of nintLint. The left facet has a reflectivity of 0.1, while the right facet is antireflective coated, leading to approximately zero reflectivity. With the bus waveguide and the pair of coupled-ring resonators, an external cavity with a cavity length of noutLout=nbusLbus+nringLring is formed, leading to an effective reflectance reff(nring,λ). The longitudinal modes of the equivalent cavity satisfies the equation 2(nintLint+noutLout)=mλ. At the initial condition whereby the effective refractive index in the nano-silicon ring waveguide is nring, the effective reflectivity of the external cavity is expressed as

reff(nring,λ)=rc(nring,λ)·t2exp(j4πλnbusLbus),
where t is the coupling coefficient between the gain chip and the nano-silicon waveguide, λ is the optical wavelength, and rc(nring,λ) is the reflectivity of the coupled-ring reflector, which is calculated via the transfer matrix method [18]. rc(nring,λ) indicates the central resonance λ0, as well as the loss margin between λ0 and its adjacent reflection maxima, whereby the tuning of the refractive index of the ring waveguide nring results in the tuning of rc. Lbus affects the optical path length of the laser cavity and thus the mode spacing. The total optical path length of the laser cavity is 13.3mm, and the longitudinal mode spacing is 90pm. The bandwidth at central resonance is 100–200 pm, which is compatible with the longitudinal mode spacing. The maximum external-cavity efficiency is obtained only when the mth longitudinal mode matches the central resonance λ0. Under this situation, the maximum SMSR and output power are achieved for single-mode lasing. To meet this condition, a 10 pm tuning accuracy (1 order smaller than the resonance bandwidth) is required to refine the position of λ0. To achieve continuous tuning, the free spectral range of the entire cavity has to be adjustable for phase matching, and the central reflective wavelength has to be tuned simultaneously. Phase matching is obtained by changing the effective refractive index of both ring resonators because the effective optical length of the ring resonators is part of the cavity length. Continuous tuning is achieved by simultaneously heating the two ring resonators. In addition, an accurate match between the central reflective wavelength and the longitudinal mode is obtained by the complementary thermal and free-carrier tuning of Ring 2, thus guaranteeing high SMSR.

 

Fig. 1. Schematic illustration of (a) the integrated silicon–photonic tunable laser using a pair of coupled-ring resonators, with its lasing wavelength electrically tuned by the complementary free-carrier dispersion and thermo-optic effects and (b) the equivalent model of the external-cavity tunable laser with a coupled-ring reflector.

Download Full Size | PPT Slide | PDF

The tuning of nring results in the tuning of λ0, and, thus, the lasing wavelength. Based on the Vernier effect, the wavelength tuning amount Δλtune is expressed as

Δλtuneλ0=RΔR·pΔnsinring,
where R is the radius of Ring 2, ΔR=2.4μm is the radius difference, p0.9 is the effective tuning ratio, and Δnsi is the change of the refractive index, which is expressed as
Δnsi=AVT2B(VPINV0).
Here, VT and VPIN are the thermal voltage and the p-i-n junction voltage, respectively, V00.7V is the switch on voltage of the silicon based p-i-n junction, and A and B are constants. Thus, the effective index tuning coefficient of the thermo-optic is dnsidVT=2AVT, which increases with thermal voltage VT, while the tuning coefficient of the free-carrier injection dnsidVPIN=B is a constant. A is 23×103/V2, and B is 23×104/V, based on the experiments. The effective index tuning coefficient is |dnsidVT|>20|dnsidVPIN|, when VT>1V. A 40 nm wavelength tuning range requires the amount of Δnsi(max)>4×103, obtainable by thermo-optic tuning; a 10 pm wavelength tuning accuracy requires the step of Δnsi(min)<3×106, obtainable by free-carrier injection.

The silicon-photonic tunable laser is fabricated on a silicon-on-insulator (SOI) wafer with a 220 nm thick structure layer. The gain chip, with dimensions of 250μm×250μm×100μm, is flip-chip bonded onto the fabricated SOI chip. The radii of Ring 1 and Ring 2 are 62 and 59.6 μm, respectively. For high reflectivity and wavelength selectivity, the coupling coefficients for the ring–ring and bus–ring coupling are chosen as 0.009 and 0.16, respectively. The width of the taper waveguide is gradually decreased from 3 μm to 450 nm, and the length of the taper waveguide is 200 μm. The nano-silicon waveguides, for both the bus and the ring resonators, have dimensions of 450 nm in width and 220 nm in height. The bus waveguide length Lbus is 550 μm. The SEM image of the hybrid integrated tunable laser is shown in Fig. 2. The misalignment between the gain chip and the silicon waveguide is controlled within 300 nm in the lateral direction, and 100 nm in the vertical direction. The coupling gap is 200 nm between the ring and the bus waveguide and 320 nm between the two ring resonators. In the experiments, the packaged tunable laser is placed on a submount, connecting with a thermoelectric cooler. Its working temperature is kept at 25°C. A broadband light source with a power density of 16dBm per 0.1 nm is coupled into the coupled-ring resonators through an optical circulator and two lens fibers. The transmission and reflection spectra are measured by an optical spectrum analyzer (OSA, Advantest Q8384). The threshold of the tunable laser is 150mA and the gain diode is electrically pumped at 185 mA. For wavelength tuning, the thermal voltage applied to the microheater VT and the junction voltage VPIN are tuned within 0 to 1.45 V and 0.7 to 1.2 V, respectively, with minimal voltage step of 0.01 V.

 

Fig. 2. SEM images of the integrated silicon–photonic tunable laser using a pair of coupled-ring resonators. The gain chip is bonded by flip-chip packaging processes.

Download Full Size | PPT Slide | PDF

Figure 3 shows the transmission and reflection spectra of the coupled-ring reflector. The central wavelength is λ0=1564.18nm with a bandwidth of 160 pm. Based on the optical intensity level, the reflection peak is lowered by 2.9 dB. Since the optical circulator has a 1.2 dB insertion loss, the reflectivity of the coupled-ring reflector is estimated to be 70%. The optical loss of the nano-silicon waveguide is 1.5 dB/cm, and the coupling loss between the active and the passive waveguides is approximately 2.5 dB; thus, the external cavity efficiency of the tunable laser is estimated to be 22%, which is threefold higher compared to the free-space MEMS tunable lasers [8].

 

Fig. 3. Transmission and reflection spectra of the coupled-ring reflector. The reflection spectrum is measured using a fiber optical circulator with a 1.2 dB insertion loss.

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the accurate tuning of the lasing wavelength based on free-carrier injection. The thermo-optic tuning accuracy is degraded, accompanying the increase of tuning efficiency at high VT. For example, when Ring 2 is operated at VT=1.36V and VPIN=0, the lasing wavelength is at 1529.80 nm. Based on the minimal voltage step of 0.01 V, the thermo-optic tuning accuracy is 240 pm. This accuracy is unable to refine the position of the longitudinal mode within the 160pm resonance band. The position of the center of the resonance band λ0 is biased from the targeted longitudinal mode. Consequently, the SMSR and the output power are limited at 26.5 dB and 2.5dBm, respectively. Although the thermal tuning accuracy can be improved by using a driving circuit with smaller voltage steps, the accuracy and stability are easily affected by the tiny fluctuation of environmental temperature. Reliable accurate tuning is demonstrated using free-carrier injection, which refines the position of λ0. When VT is kept as a constant at 1.36 V and VPIN is tuned from 0.7 to 0.85 V, the lasing wavelength has a small redshift of 30 pm, and the tuning accuracy is 2 pm per 0.01 V. As a result, the SMSR and the output power are refined to 40.5 dB and 3 dBm, respectively. In addition to the advantage of high tuning accuracy, the free-carrier dispersion effect also has a fast switching speed, as shown in Fig. 4(b). To test the switching speed, the p-i-n junction works at a bias voltage of 1.0 V and a modulation voltage of 1.6 V. The modulation frequency is set to 0.5 GHz. The rise and fall times are 0.78 ns and 0.72 ns, respectively, which are 103-fold faster as compared to the thermo-optic response.

 

Fig. 4. Experimental results of (a) the demonstration of accurate wavelength tuning due to free-carrier injection, denoted by the improvement of the SMSR and the output power and (b) the response speed of the free-carrier dispersion effect; the rise and fall times are 0.78 and 0.72 ns, respectively.

Download Full Size | PPT Slide | PDF

The free-carrier injection is necessary for accurate phase matching when VT>1.20V. The mode map of the SMSR, as a function of both VT and VPIN of Ring 2, is shown in Fig. 5(a). The SMSR is optimized to above 40 dB when VPIN is tuned from 0.7 to 1.0 V. The wavelength tuning is discrete with a 1.62 nm wavelength spacing when the effective refractive index of Ring 1 is fixed and Ring 2 is tuned. Continuous wavelength tuning is obtained when both ring resonators are made tunable. A mode map of the lasing wavelength, as a function of the thermal voltages applied on both ring resonators, is shown in Fig. 5(b). A series of single-mode lasing spectra is combined and shown in Fig. 6. Benefiting from the fine tuning accuracy by free-carrier injection, the SMSR is kept above 40 dB within the wavelength range from 1522.54 to 1552.90 nm, which covers 75% of the accessible spectrum, and the maximal output power is 3 dBm. The SMSR is reduced (minimum 37.7 dB) due to the degraded gain level at the edge of the accessible spectrum, and the power is reduced to 1.5dBm. In addition, due to the accurate and fast tuning properties, the free-carrier effect makes quick compensation possible to a lasing wavelength shift caused by temperature change or gain current fluctuation.

 

Fig. 5. Mode maps of (a) the SMSR as a function of VT and VPIN applied on Ring 2 and (b) the lasing wavelength as a function of the thermal voltages applied on the two ring resonators.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Optical spectra of a series of single-frequency lasing ranging from 1564.18 to 1522.54 nm; it obtains over 40 dB SMSR and maximal 2 mW output power due to the fine tuning of the free-carrier injection.

Download Full Size | PPT Slide | PDF

In conclusion, a silicon-photonic tunable laser using a pair of coupled-ring resonators as a reflector is demonstrated. With the central reflective wavelength and the phase matching being simultaneously controlled by complementary free-carrier dispersion and thermo-optic effects, the low-loss coupled-ring reflector guarantees a 22% external-cavity efficiency, 41.6 nm tuning range, 2 pm tuning accuracy, and less than 1 ns response speed. The wavelength tuning through free-carrier injection ensures 40 dB SMSR and 2 mW output power, as well as quick wavelength compensation capability. The tunable laser provides potential applications in high-speed optical networks, optical sensors, and on-chip optoelectronic systems.

Funding

National Research Foundation-Prime Minister’s office, Republic of Singapore (NRF) (1102-IRIS-05-05).

REFERENCES

1. F. J. Duarte, Tunable Lasers Handbook (Academic, 1995), pp. 349–442.

2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002). [CrossRef]  

3. Y. D. Jeong and Y. H. Won, Opt. Lett. 31, 2586 (2006). [CrossRef]  

4. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005). [CrossRef]  

5. T. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflugl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, Opt. Express 20, 23339 (2012). [CrossRef]  

6. A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007). [CrossRef]  

7. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008). [CrossRef]  

8. H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008). [CrossRef]  

9. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004). [CrossRef]  

10. B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006). [CrossRef]  

11. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006). [CrossRef]  

12. T. Creazzo, E. Marchena, S. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, and A. Mizrahi, Opt. Express 21, 28048 (2013). [CrossRef]  

13. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012). [CrossRef]  

14. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004). [CrossRef]  

15. M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013). [CrossRef]  

16. B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002). [CrossRef]  

17. S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009). [CrossRef]  

18. I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005). [CrossRef]  

19. T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March 22–26, 2015, paper W2A.52.

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable Lasers Handbook (Academic, 1995), pp. 349–442.
  2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
    [Crossref]
  3. Y. D. Jeong and Y. H. Won, Opt. Lett. 31, 2586 (2006).
    [Crossref]
  4. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
    [Crossref]
  5. T. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflugl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, Opt. Express 20, 23339 (2012).
    [Crossref]
  6. A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007).
    [Crossref]
  7. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
    [Crossref]
  8. H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
    [Crossref]
  9. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [Crossref]
  10. B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).
    [Crossref]
  11. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
    [Crossref]
  12. T. Creazzo, E. Marchena, S. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, and A. Mizrahi, Opt. Express 21, 28048 (2013).
    [Crossref]
  13. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
    [Crossref]
  14. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
    [Crossref]
  15. M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
    [Crossref]
  16. B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
    [Crossref]
  17. S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009).
    [Crossref]
  18. I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005).
    [Crossref]
  19. T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

2013 (2)

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

T. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflugl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, Opt. Express 20, 23339 (2012).
[Crossref]

2009 (1)

S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009).
[Crossref]

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
[Crossref]

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

2007 (1)

A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007).
[Crossref]

2006 (3)

Y. D. Jeong and Y. H. Won, Opt. Lett. 31, 2586 (2006).
[Crossref]

B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

2005 (2)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005).
[Crossref]

2004 (2)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

2002 (2)

B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
[Crossref]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Blanchard, R.

Blivin, C. C.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Bowers, J. E.

B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
[Crossref]

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Cai, H.

T. Creazzo, E. Marchena, S. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, and A. Mizrahi, Opt. Express 21, 28048 (2013).
[Crossref]

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

Capasso, F.

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
[Crossref]

Chremmos, I.

I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Creazzo, T.

Dallesasse, J. M.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[Crossref]

Davenport, M.

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Diehl, L.

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Duarte, F. J.

F. J. Duarte, Tunable Lasers Handbook (Academic, 1995), pp. 349–442.

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Dupuis, R. D.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Fathpour, S.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

He, L.

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Huang, J.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
[Crossref]

Huang, Y.

Hulme, J.

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Jalali, B.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[Crossref]

Jeong, Y. D.

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Komljenovic, T.

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

Krasulick, S.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

Liu, A. Q.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007).
[Crossref]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
[Crossref]

Liu, Z.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Loncar, M.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[Crossref]

Mansuripur, T.

Marchena, E.

Matsuo, S.

S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009).
[Crossref]

Menzel, S.

Mizrahi, A.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Oel, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Orden, D. V.

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Pflugl, C.

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Ren, M.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Ryou, J. H.

Segawa, T.

S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
[Crossref]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

Spann, J. Y.

Srinivasan, S.

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

Stone, R. J.

Suo, Z.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Tamil, J.

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

Tang, D. Y.

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

Tsai, J. M.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Uzunoglu, N.

I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

Won, Y. H.

Wu, J.

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

Yu, P. K. L.

Zhang, Q. X.

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

Zhang, X. M.

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007).
[Crossref]

Zhou, J.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
[Crossref]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

ACS Nano (1)

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, ACS Nano 7, 1676 (2013).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[Crossref]

Appl. Phys. Lett. (1)

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, Appl. Phys. Lett. 92, 051113 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, IEEE J. Sel. Top. Quantum Electron. 11, 149 (2005).
[Crossref]

S. Matsuo and T. Segawa, IEEE J. Sel. Top. Quantum Electron. 15, 545 (2009).
[Crossref]

IEEE Photon. Tech. Lett. (2)

I. Chremmos and N. Uzunoglu, IEEE Photon. Tech. Lett. 17, 2110 (2005).
[Crossref]

B. Liu, A. Shakouri, and J. E. Bowers, IEEE Photon. Tech. Lett. 14, 600 (2002).
[Crossref]

J Micromech. Microeng. (1)

A. Q. Liu and X. M. Zhang, J Micromech. Microeng. 17, R1 (2007).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 2, 180 (2008).
[Crossref]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[Crossref]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oel, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

T. Komljenovic, M. Davenport, S. Srinivasan, J. Hulme, and J. E. Bowers, “Narrow linewidth tunable laser using coupled resonator mirrors,” in Proceedings of the Optical Fiber Communication Conference, Los Angeles, California, March22–26, 2015, paper W2A.52.

F. J. Duarte, Tunable Lasers Handbook (Academic, 1995), pp. 349–442.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of (a) the integrated silicon–photonic tunable laser using a pair of coupled-ring resonators, with its lasing wavelength electrically tuned by the complementary free-carrier dispersion and thermo-optic effects and (b) the equivalent model of the external-cavity tunable laser with a coupled-ring reflector.
Fig. 2.
Fig. 2. SEM images of the integrated silicon–photonic tunable laser using a pair of coupled-ring resonators. The gain chip is bonded by flip-chip packaging processes.
Fig. 3.
Fig. 3. Transmission and reflection spectra of the coupled-ring reflector. The reflection spectrum is measured using a fiber optical circulator with a 1.2 dB insertion loss.
Fig. 4.
Fig. 4. Experimental results of (a) the demonstration of accurate wavelength tuning due to free-carrier injection, denoted by the improvement of the SMSR and the output power and (b) the response speed of the free-carrier dispersion effect; the rise and fall times are 0.78 and 0.72 ns, respectively.
Fig. 5.
Fig. 5. Mode maps of (a) the SMSR as a function of VT and VPIN applied on Ring 2 and (b) the lasing wavelength as a function of the thermal voltages applied on the two ring resonators.
Fig. 6.
Fig. 6. Optical spectra of a series of single-frequency lasing ranging from 1564.18 to 1522.54 nm; it obtains over 40 dB SMSR and maximal 2 mW output power due to the fine tuning of the free-carrier injection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

reff(nring,λ)=rc(nring,λ)·t2exp(j4πλnbusLbus),
Δλtuneλ0=RΔR·pΔnsinring,
Δnsi=AVT2B(VPINV0).

Metrics