Abstract

We introduce Airy-beam tomographic microscopy (ATM) for high-resolution, volumetric, inertia-free imaging of biological specimens. The work exploits the highly adjustable Airy trajectories in the 3D space, transforming the conventional telecentric wide-field imaging scheme that requires sample or focal-plane scanning to acquire 3D information. The results present a consistent near-diffraction-limited 3D resolution across a tenfold extended imaging depth compared to wide-field microscopy. We anticipate the strategy to not only offer a promising paradigm for 3D optical microscopy, but also be translated to other non-optical waveforms.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [Crossref]
  2. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
    [Crossref]
  3. N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, Optica 6, 686 (2019).
    [Crossref]
  4. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
    [Crossref]
  5. M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
    [Crossref]
  6. J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
    [Crossref]
  7. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
    [Crossref]
  8. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
    [Crossref]
  9. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
    [Crossref]
  10. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
    [Crossref]
  11. A. Salandrino and D. N. Christodoulides, Opt. Lett. 35, 2082 (2010).
    [Crossref]
  12. P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
    [Crossref]
  13. I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
    [Crossref]
  14. S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
    [Crossref]
  15. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
    [Crossref]
  16. J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
    [Crossref]
  17. J. Mertz, Optica 6, 1261 (2019).
    [Crossref]
  18. S. Barwick, Opt. Lett. 36, 2827 (2011).
    [Crossref]
  19. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, Opt. Lett. 35, 2260 (2010).
    [Crossref]
  20. A. C. Kak and M. Slaney, “3. Algorithms for reconstruction with nondiffracting sources,” in Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–112.
  21. A. Ziegler, T. Nielsen, and M. Grass, Med. Phys. 35, 1317 (2008).
    [Crossref]
  22. W. J. Shain, N. A. Vickers, B. B. Goldberg, T. Bifano, and J. Mertz, Opt. Lett. 42, 995 (2017).
    [Crossref]
  23. E. J. Botcherby, M. J. Booth, R. Juškaitis, and T. Wilson, Opt. Express 16, 21843 (2008).
    [Crossref]
  24. H. Nagar and Y. Roichman, Opt. Lett. 44, 1896 (2019).
    [Crossref]
  25. O. E. Olarte, J. Andilla, D. Artigas, and P. Loza-Alvarez, Optica 2, 702 (2015).
    [Crossref]

2019 (3)

2018 (1)

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

2017 (1)

2015 (2)

O. E. Olarte, J. Andilla, D. Artigas, and P. Loza-Alvarez, Optica 2, 702 (2015).
[Crossref]

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

2014 (3)

S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

2013 (1)

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

2012 (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

2008 (4)

2007 (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[Crossref]

Aggarwal, S.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Andilla, J.

Arie, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

Artigas, D.

Balazs, N. L.

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[Crossref]

Barwick, S.

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

Bekenstein, R.

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Berry, M. V.

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[Crossref]

Bifano, T.

Booth, M. J.

Botcherby, E. J.

Broky, J.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Chen, Z.

Christodoulides, D. N.

Cižmár, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Coll-Lladó, C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Dalgarno, H. I. C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Dholakia, K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

Dogariu, A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Efremidis, N. K.

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

Ferrier, D. E. K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

Goldberg, B. B.

Gover, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

Grass, M.

A. Ziegler, T. Nielsen, and M. Grass, Med. Phys. 35, 1317 (2008).
[Crossref]

Gunn-Moore, F. J.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Hu, Y.

Huang, S.

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
[Crossref]

Juškaitis, R.

Kak, A. C.

A. C. Kak and M. Slaney, “3. Algorithms for reconstruction with nondiffracting sources,” in Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–112.

Kaminer, I.

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Lereah, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

Li, T.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Lilach, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

Lou, C.

Loza-Alvarez, P.

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Mazilu, M.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

McCluskey, K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Mertz, J.

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

Nagar, H.

Nemirovsky, J.

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Nielsen, T.

A. Ziegler, T. Nielsen, and M. Grass, Med. Phys. 35, 1317 (2008).
[Crossref]

Nylk, J.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Olarte, O. E.

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

Preciado, M. A.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Rechtsman, M.

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Roichman, Y.

Salandrino, A.

Segev, M.

N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, Optica 6, 686 (2019).
[Crossref]

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Shain, W. J.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[Crossref]

Slaney, M.

A. C. Kak and M. Slaney, “3. Algorithms for reconstruction with nondiffracting sources,” in Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–112.

Tello, J. A.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
[Crossref]

Vettenburg, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Vickers, N. A.

Voloch-Bloch, N.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

Wang, Y.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Wilson, T.

Xu, J.

Yang, S.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Yang, Z.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Yin, X.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Zhang, P.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, Opt. Lett. 35, 2260 (2010).
[Crossref]

Zhang, X.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Zhu, J.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Zhu, X.

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Zhuang, X.

S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
[Crossref]

Ziegler, A.

A. Ziegler, T. Nielsen, and M. Grass, Med. Phys. 35, 1317 (2008).
[Crossref]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[Crossref]

Appl. Phys. Lett. (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Med. Phys. (1)

A. Ziegler, T. Nielsen, and M. Grass, Med. Phys. 35, 1317 (2008).
[Crossref]

Nat. Commun. (1)

P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, and X. Zhang, Nat. Commun. 5, 4316 (2014).
[Crossref]

Nat. Methods (1)

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).
[Crossref]

Nat. Photonics (3)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photonics 3, 395 (2009).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photonics 8, 302 (2014).
[Crossref]

Nat. Phys. (1)

I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, Nat. Phys. 11, 261 (2015).
[Crossref]

Nature (1)

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature 494, 331 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optica (3)

Phys. Rev. Lett. (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Sci. Adv. (1)

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[Crossref]

Other (1)

A. C. Kak and M. Slaney, “3. Algorithms for reconstruction with nondiffracting sources,” in Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–112.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Principle of ATM. The object is imaged with Airy beams of varying azimuthal angles of $\Delta\varphi$ and tomographically reconstructed using the recorded perspective images.
Fig. 2.
Fig. 2. Setup and system calibration of ATM. (a) Schematic diagram of the experimental setup for ATM. The objective lens (OL) and tube lens (TL) form an image of the sample at the intermediate image plane (black dashed line), which is relayed to the sCMOS camera by ${ f}/{4}$ relay lenses (RLs). The spatial light modulator (SLM) situated at the Fourier plane of the RL imparts phase modulation that converts the light into Airy beams. NF: narrowband filter; P: polarizer; M: mirror; and DC: dichroic cube. The inset diagram illustrates the varying phase masks on the SLM that steer the Airy trajectories to form perspective views. (b) Transverse images of Airy beams generated using the phase masks without (left) and with (right) the additional phase modulation to remove the side lobes. (c) Simulated (top) and experimental (bottom) propagation trajectories of Airy beams. The image of the experimental results is composed of and illustrates the transverse images of the Airy beam at varying depths. Symmetric propagation above and below the focal plane is observed. (d) Same images of (c) generated using the phase chirp, showing enhanced propagation on one side of the focal plane to avoid ambiguity. $\Delta l^\prime$ and $z$ in (c) and (d) are measured in the image and object space, respectively. (e) Peak intensity of the Gaussian (or Airy-disk) beam, Airy beam, and Airy beam with the phase chirp as a function of the depth. (f) Lateral displacement of the Airy beam with the phase chirp as a function of the depth, in good agreement with the theoretical values. (g) Linear increase of the lateral displacement over a unit depth variation ($\Delta z = {1}\;{\unicode{x00B5}{\rm m}}$) as a function of the depth. (h) Merged image of a 200 nm fluorescent bead recorded at every $\Delta{\varphi} = {\pi}/3$, as well as at two different axial positions of 9 µm (green) and 15 µm (red) below the focal plane. Concentric dashed circles mark the average lateral displacements. Scale bars in (b, h) are characterized as in the object space. Scale bars: 5 µm (b, h).
Fig. 3.
Fig. 3. Imaging caliber samples using ATM. (a) 3D view of a reconstructed 200 nm fluorescent bead located at $z = {10}\;{\unicode{x00B5}{\rm m}}$ below the focal plane. (b) Corresponding cross-sectional profiles of (a) in $x {-} y,y {-} z$, and $x {-} z$ across the center, exhibiting FWHM values of 0.58 µm, 0.63 µm, and 1.32 µm in $x,\;y$, and $z$, respectively. (c) FWHM values of the cross-sectional profiles at varying depths over a 15-µm axial range, showing 0.4-0.6 µm in $x$, 0.5-0.7 µm in $y$, and 1.2–1.7 µm in $z$. (d)–(f) Raw, deconvolved, and 3D reconstructed images of seven fluorescent beads distributed in 3D agarose gel across a ${\gt}{8 -\unicode{x00B5}{\rm m}}$ axial range. (d) and (e) show the perspective images acquired at $\Delta {\varphi} = 0$. Projections of the 3D image in $y {-} z$ and $x {-} z$ were shown in the insets in (f). Depth information in (f) is coded as shown in the color-scale bar. (g) 3D reconstructed image of a surface-stained, 6 µm fluorescent bead, whose entire hollow structure was clearly observed. (h) The cross-sectional profiles across the center of (g), exhibiting FWHM values of the left and right profiles of 0.67 µm and 0.52 µm in $x$, 0.69 µm and 0.61 µm in $y$, and 1.51 µm and 1.68 µm in $z$, respectively. Scale bars: 5 µm (d)–(f).
Fig. 4.
Fig. 4. Imaging mouse kidney tissue using ATM. (a) Wide-field image of a cryostat section of mouse kidney stained with Alexa Fluor 488 on elements of the glomeruli and convoluted tubules acquired by overlaying 10 axial stacks at a step size of 1 µm over a 10 µm range. (b) 3D reconstructed image of the same region of (a) using ATM, showing consistent structural information. The insets in (a) and (b) display the $x {-} z$ and $y {-} z$ cross-sectional views along the corresponding dashed lines. (c) and (d) 3D perspective view and synthesized focal stacks of (b). The arrows in (d) show structural variations observed across different depths. (e) Two-color, wide-field images of the mouse kidney section stained with both Alexa Fluor 568 (top) on filamentous actins in glomeruli and the brush border and Alexa Fluor 488 (bottom) as in (a). The images were acquired by scanning and overlaying five axial stacks at a step size of 1 µm over a 5 µm range. (f) Two-color images of the same region of (e) taken using ATM. (g) Merged two-color top (red) and bottom (green) images of (f) at the depth of 4 µm, showing co-localized actin bundles in the apical domain of the brush border and tubular structures. The insets display the $x {-} z$ and $y {-} z$ cross-sectional views along the corresponding dashed lines. (h) 3D ATM image of a separated tubular element as marked by the arrows in (e)–(g). (i)–(k) Cross-sectional profiles of (h) across the center in $x,\;y$, and $z$, exhibiting FWHM values of 0.67 µm, 0.80 µm, and 2.07 µm, respectively. The depth information in (a), (b), (e), and (f) is coded as in the corresponding color-scale bars. Scale bars: 5 µm (a), (b), (d), (e)–(g), and 2.5 µm (g, inset).