Abstract

Quasi-phase-matched interactions in waveguides with quadratic nonlinearities enable highly efficient nonlinear frequency conversion. In this paper, we demonstrate the first generation of devices that combine the dispersion engineering available in nanophotonic waveguides with quasi-phase-matched nonlinear interactions available in periodically poled lithium niobate (PPLN). This combination enables quasi-static interactions of femtosecond pulses, reducing the pulse energy requirements by several orders of magnitude compared to conventional devices, from picojoules to femtojoules. We experimentally demonstrate two effects associated with second harmonic generation (SHG). First, we observe efficient quasi-phase-matched SHG with $ {\lt} {100}\;{\rm fJ}$ of pulse energy. Second, in the limit of strong phase-mismatch, we observe spectral broadening of both harmonics with as little as 2 pJ of pulse energy. These results lay a foundation for a new class of nonlinear devices, in which coengineering of dispersion with quasi-phase-matching enables efficient nonlinear optics at the femtojoule level.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2

Ashutosh Rao, Kamal Abdelsalam, Tracy Sjaardema, Amirmahdi Honardoost, Guillermo F. Camacho-Gonzalez, and Sasan Fathpour
Opt. Express 27(18) 25920-25930 (2019)

Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off

Zheng Zheng, Andrew M. Weiner, Krishnan R. Parameswaran, Ming-Hsien Chou, and Martin M. Fejer
J. Opt. Soc. Am. B 19(4) 839-848 (2002)

Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter
Opt. Lett. 22(1) 13-15 (1997)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  2. A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
    [Crossref]
  3. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
    [Crossref]
  4. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref]
  5. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
    [Crossref]
  6. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
    [Crossref]
  7. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
    [Crossref]
  8. P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
    [Crossref]
  9. H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
    [Crossref]
  10. M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
    [Crossref]
  11. S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
    [Crossref]
  12. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
    [Crossref]
  13. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  14. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
    [Crossref]
  15. L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
    [Crossref]
  16. A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
    [Crossref]
  17. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
    [Crossref]
  18. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  19. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  20. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [Crossref]
  21. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420–1437 (2000).
    [Crossref]
  22. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [Crossref]
  23. A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3, 324–327 (2016).
    [Crossref]
  24. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19, 839–848 (2002).
    [Crossref]
  25. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–859 (2002).
    [Crossref]
  26. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [Crossref]
  27. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  28. J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
    [Crossref]
  29. A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
    [Crossref]
  30. M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
    [Crossref]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]

2019 (3)

2018 (7)

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

2017 (1)

2016 (4)

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3, 324–327 (2016).
[Crossref]

2015 (2)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

2011 (2)

2007 (2)

2006 (2)

2002 (2)

2000 (2)

1997 (1)

1991 (1)

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

1976 (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Abdallah, Z.

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Aihara, K.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Arbore, M. A.

Bache, M.

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Battle, P.

Beausoleil, R. G.

Boes, A.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Bowers, J. E.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Bramati, A.

Bruch, A. W.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

Byer, R. L.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3, 324–327 (2016).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Chang, L.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Chen, Y. A.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Cheng, R.

Chiles, J.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Chinaglia, W.

Chou, M. H.

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Conti, C.

Desiatov, B.

Di Trapani, P.

Diddams, S. A.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Ding, X.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Fejer, M. M.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
[Crossref]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
[Crossref]

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19, 839–848 (2002).
[Crossref]

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
[Crossref]

G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420–1437 (2000).
[Crossref]

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

Fermann, M.

Fermann, M. E.

Fiorentino, M.

Gaeta, A. L.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Galvanauskas, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gong, Z.

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Guo, X.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Hamerly, R.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Haribara, Y.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Harter, D.

Hartl, I.

He, Y.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

He, Y. M.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Hertz, H. M.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

Hickstein, D. D.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Hu, Y.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Imeshev, G.

Inagaki, T.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Ingold, K. A.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3, 324–327 (2016).
[Crossref]

Ito, R.

Jankowski, M.

Jiang, X.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Johnson, A. R.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Kasriel, S.

Keller, U.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Kennedy, M. J.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Kilius, J.

Kitamoto, A.

Klenner, A.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Knoerzer, M.

Kondo, T.

Kowligy, A.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Kumar, S.

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Lamont, M. R. E.

Langrock, C.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
[Crossref]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
[Crossref]

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Li, H.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Li, L.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Li, W.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Li, Y.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lim, E. J.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Ling, J.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lipson, M.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Liu, N. L.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Liu, X.

Loncar, M.

Lu, C. Y.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Lu, J.

Luke, K.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Ma, L.

Mabuchi, H.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Marandi, A.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3, 324–327 (2016).
[Crossref]

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Matsumoto, S.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

Mayer, A. S.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

McGeehan, J. E.

McMahon, P. L.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Minardi, S.

Mitchell, A.

Moses, J.

Munro, M. W.

Nader, N.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Nguyen, T. G.

Okawachi, Y.

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

Pan, J. W.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Papp, S. B.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Parameswaran, K. R.

Pelc, J. S.

Peng, L. C.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Peters, J.

Peters, J. D.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Phillips, C. R.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Roberts, T. D.

Roelkens, G.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Shams-Ansari, A.

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Shirane, M.

Shoji, I.

Silberhorn, C.

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Slattery, O.

Spencer, D. T.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Spillane, S. M.

Stanton, E. J.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Stefszky, M.

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Su, Z. E.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Surya, J. B.

Takesue, H.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Tamat, S.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Tang, H. X.

Tang, X.

Trillo, S.

Ulvila, V.

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Utsunomiya, S.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Vainio, M.

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Valiulis, G.

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Volet, N.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Wang, C.

Wang, J.

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Wang, L.

Wang, X. L.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Wang, Z.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Weiner, A. M.

Willner, A. E.

Wise, F. W.

Xu, Y.

Yamamoto, Y.

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Yan, J.

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

You, L.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Zhang, L.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

Zhang, M.

Zhang, Q.

Zhang, W.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Zheng, Z.

Zhong, H. S.

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride ring resonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Electron. Lett. (1)

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27, 22–23 (1991).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (6)

Laser Photon. Rev. (1)

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1800149 (2018).
[Crossref]

Nat. Commun. (1)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (5)

Phys. Rev. A (1)

M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and M. Vainio, “Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators,” Phys. Rev. A 98, 053850 (2018).
[Crossref]

Phys. Rev. Appl. (2)

A. S. Mayer, C. R. Phillips, C. Langrock, A. Klenner, A. R. Johnson, K. Luke, Y. Okawachi, M. Lipson, A. L. Gaeta, M. M. Fejer, and U. Keller, “Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide,” Phys. Rev. Appl. 6, 054009 (2016).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Phys. Rev. B (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Phys. Rev. Lett. (3)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121, 250505 (2018).
[Crossref]

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal simultons in optical parametric oscillators,” Phys. Rev. Lett. 120, 053904 (2018).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamat, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science 354, 614–617 (2016).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document—Derivation of Nonlinear Coupling

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Waveguide cross-section, showing the normalized electric field associated with the simulated $ {{\rm TE}_{00}} $ fundamental (left) and second harmonic (right) modes. The waveguides shown here correspond to a top width of 1850 nm, an etch depth of 340 nm, and a starting film thickness of 700 nm. (b) and (c) Simulated poling period and normalized efficiency, respectively, as a function of waveguide geometry. (d) and (e) Simulated $ \Delta {k^\prime } $ and $ k_\omega ^{{\prime \prime} } $, respectively. The solid black lines denote $ \Delta {k^\prime } = 0 $, and the dashed black contour line shows geometries that achieve $ |\Delta {k^\prime }| \lt 5\;{\rm fs/mm} $.
Fig. 2.
Fig. 2. (a) Schematic of the poling process, resulting in high fidelity domain inversion with a $ \sim\! 50\% $ duty cycle. (b) Waveguides are patterned using an $ {{\rm Ar}^ + } $ assisted dry etch, resulting in smooth sidewalls. (c) The samples are prepared using laser dicing, resulting in optical-quality end-facets.
Fig. 3.
Fig. 3. (a) Schematic of experimental setup. ND, variable neutral density filter; OBJ, reflective objective lens; OSA, optical spectrum analyzer. (b) and (c) Measured spectrum of the driving polarization ($ |{A_\omega }(0,\Omega )*{A_\omega }(0,\Omega )|^2 $) and output second harmonic ($ |{A_{2\omega }}(L,\Omega )|^2 $), respectively. (d) Measured SHG transfer function (black) for a 6-mm-long nanophotonic waveguide, showing good agreement with theory (blue). The bandwidth of these waveguides exceeds that of bulk PPLN (orange) by more than an order of magnitude. (e) SHG conversion efficiency and pump depletion as a function of input pulse energy, showing 50% conversion efficiency with an input pulse energy of 60 fJ. Inset: undepleted regime with fit given by Eq. (3) and a heuristic model for saturation, as described in the text.
Fig. 4.
Fig. 4. (a) Evolution of power spectral density over an order of magnitude variation of pulse energy. Adjacent traces are displaced by 30 dB for clarity. The different noise floors correspond to the three spectrometers used, and dotted lines have been added to guide the eye where discontinuities in these noise floors are present. (b) Photograph of supercontinuum produced with 11-pJ input to the waveguide. (c) Measured carrier-envelope-offset beatnotes for three different values of intracavity dispersion in the laser used to pump the OPO.
Fig. 5.
Fig. 5. Power spectral density output from the chip as a function of input pulse energy. (a) Experiment, (b) simulation. The power in dBm is measured in 2-nm-wide spectral bins. (c) Simulated coherence of the fundamental and second harmonic generated by a 4-pJ pulse, showing $ |{g^{(1)}}| \sim 1 $.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η 0 = 2 ω 2 d e f f 2 n ω 2 n 2 ω ϵ 0 c 3 A e f f ,
z A ω ( z , t ) = i κ A 2 ω A ω exp ( i Δ k z ) + D ^ ω A ω ,
z A 2 ω ( z , t ) = i κ A ω 2 exp ( i Δ k z ) Δ k t A 2 ω + D ^ 2 ω A 2 ω ,
| A 2 ω ( z , Ω ) | 2 = s i n c 2 ( Δ k ( Ω ) z / 2 ) | A 2 ω N D ( z , Ω ) | 2 .
z A ω = i k ω 2 t 2 A ω + i γ S P M | A ω 2 | A ω ,
A 2 ω ( z , t ) = i κ A ω ( z , t ) 2 ( exp ( i Δ k z ) 1 ) / Δ k .

Metrics