Abstract

Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a ${{\rm P}_\pi }$ of ${1.7}\;{\rm mW/}\pi $ without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a ${70}^\circ \times {6}^\circ $ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Beam steering with ultracompact and low-power silicon resonator phase shifters

Hugo Larocque, Leonardo Ranzani, James Leatham, Jeffrey Tate, Alex Niechayev, Thomas Yengst, Tin Komljenovic, Charley Fodran, Duane Smith, and Mohammad Soltani
Opt. Express 27(24) 34639-34654 (2019)

Ghost imaging using a large-scale silicon photonic phased array chip

Yusuke Kohno, Kento Komatsu, Rui Tang, Yasuyuki Ozeki, Yoshiaki Nakano, and Takuo Tanemura
Opt. Express 27(3) 3817-3823 (2019)

2D broadband beamsteering with large-scale MEMS optical phased array

Youmin Wang, Guangya Zhou, Xiaosheng Zhang, Kyungmok Kwon, Pierre-A. Blanche, Nicholas Triesault, Kyoung-sik Yu, and Ming C. Wu
Optica 6(5) 557-562 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. V. Acoleyen, H. Rogier, and R. Baets, Opt. Express 18, 13655 (2010).
    [Crossref]
  2. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
    [Crossref]
  3. J. Sun, E. S. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Lett. 39, 367 (2014).
    [Crossref]
  4. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Lett. 39, 4575 (2014).
    [Crossref]
  5. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, Opt. Express 23, 5861 (2015).
    [Crossref]
  6. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, Opt. Express 19, 21595 (2011).
    [Crossref]
  7. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, Optica 3, 887 (2016).
    [Crossref]
  8. H. Abediasl and H. Hashemi, Opt. Express 23, 6509 (2015).
    [Crossref]
  9. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, Opt. Express 23, 21012 (2015).
    [Crossref]
  10. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
    [Crossref]
  11. S. Chung, H. Abediasl, and H. Hashemi, in IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 262.
  12. S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
    [Crossref]
  13. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, Opt. Lett. 39, 941 (2014).
    [Crossref]
  14. K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, Opt. Express 23, 19405 (2015).
    [Crossref]
  15. C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, Opt. Express 21, 5198 (2013).
    [Crossref]
  16. W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).
  17. C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.
  18. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
    [Crossref]
  19. C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.
  20. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
    [Crossref]
  21. E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
    [Crossref]
  22. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
    [Crossref]
  23. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
    [Crossref]
  24. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergmen, and M. Lipson, Optica 2, 530 (2015).
    [Crossref]
  25. J. Wang, S. He, and D. Dai, Laser Photon. Rev. 8, L18 (2014).
    [Crossref]
  26. D. Dai, Y. Tang, and J. E. Bowers, Opt. Express 20, 13425 (2012).
    [Crossref]
  27. Y. Ding, J. Xu, F. D. Ros, B. Huang, H. Ou, and C. Peucheret, Opt. Express 21, 10376 (2013).
    [Crossref]
  28. A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
    [Crossref]
  29. N. Riesen and J. D. Love, IEEE Photonics Technol. Lett. 25, 2501 (2013).
    [Crossref]
  30. X. Sun, H.-C. Liu, and A. Yariv, Opt. Lett. 34, 280 (2009).
    [Crossref]
  31. A. F. Milton and W. K. Burns, Appl. Opt. 14, 1207 (1975).
    [Crossref]
  32. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
    [Crossref]
  33. P. Sun and R. M. Reano, Opt. Express 18, 8406 (2010).
    [Crossref]
  34. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, Opt. Lett. 38, 733 (2013).
    [Crossref]
  35. N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).
    [Crossref]
  36. C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).
  37. B. Stern, X. Ji, A. Dutt, and M. Lipson, Opt. Lett. 42, 4541 (2017).
    [Crossref]
  38. S.-Y. Tseng, Opt. Express 21, 21224 (2013).
    [Crossref]
  39. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, Opt. Express 17, 10457 (2009).
    [Crossref]
  40. S. Chung, M. Nakai, and H. Hashemi, Opt. Express 27, 13430 (2019).
    [Crossref]
  41. U. D. Dave and M. Lipson, in Conference on Lasers and Electro- Optics (CLEO) (2019), paper SM3J.6.

2019 (2)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

S. Chung, M. Nakai, and H. Hashemi, Opt. Express 27, 13430 (2019).
[Crossref]

2018 (2)

S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

2017 (5)

2016 (1)

2015 (6)

2014 (5)

2013 (6)

2012 (1)

2011 (1)

2010 (2)

2009 (2)

2006 (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

1996 (1)

N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).
[Crossref]

1975 (1)

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
[Crossref]

H. Abediasl and H. Hashemi, Opt. Express 23, 6509 (2015).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, in IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 262.

Abiri, B.

Acoleyen, K. V.

Aflatouni, F.

Baets, R.

Bergmen, K.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergmen, and M. Lipson, Optica 2, 530 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Burns, W. K.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

Cardenas, J.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Cheben, P.

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergmen, and M. Lipson, Optica 2, 530 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Chen, R. T.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Chettiar, U.

Chung, S.

S. Chung, M. Nakai, and H. Hashemi, Opt. Express 27, 13430 (2019).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, in IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 262.

Coldren, L. A.

Cole, D. B.

Coolbaugh, D.

Covey, J.

Dai, D.

J. Wang, S. He, and D. Dai, Laser Photon. Rev. 8, L18 (2014).
[Crossref]

D. Dai, Y. Tang, and J. E. Bowers, Opt. Express 20, 13425 (2012).
[Crossref]

Dave, U. D.

U. D. Dave and M. Lipson, in Conference on Lasers and Electro- Optics (CLEO) (2019), paper SM3J.6.

Davenport, M. L.

Davids, P. S.

Delâge, A.

Densmore, A.

DePrenger, M. J.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

DeRose, C.

DeRose, C. T.

Ding, Y.

Doylend, J. K.

Dutt, A.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

B. Stern, X. Ji, A. Dutt, and M. Lipson, Opt. Lett. 42, 4541 (2017).
[Crossref]

Efimov, O.

Engheta, N.

Ferraro, M. S.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Feshali, A.

Fleet, E.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Garraway, B. M.

N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).
[Crossref]

Goetz, P. G.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Hajimiri, A.

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

Hashemi, H.

S. Chung, M. Nakai, and H. Hashemi, Opt. Express 27, 13430 (2019).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
[Crossref]

H. Abediasl and H. Hashemi, Opt. Express 23, 6509 (2015).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, in IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 262.

He, S.

J. Wang, S. He, and D. Dai, Laser Photon. Rev. 8, L18 (2014).
[Crossref]

Heck, J.

Heck, M. J. R.

Hosseini, A.

Hosseini, E. S.

J. Sun, E. S. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Lett. 39, 367 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[Crossref]

Huang, B.

Hulme, J. C.

Hutchison, D. N.

Janz, S.

Ji, X.

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

Kekatpure, R. D.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

Kim, W.

Kumar, R.

Kwong, D.

Lapointe, J.

Leake, G.

Li, N.

Lipson, M.

B. Stern, X. Ji, A. Dutt, and M. Lipson, Opt. Lett. 42, 4541 (2017).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergmen, and M. Lipson, Optica 2, 530 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

U. D. Dave and M. Lipson, in Conference on Lasers and Electro- Optics (CLEO) (2019), paper SM3J.6.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

Liu, H.-C.

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Love, J. D.

N. Riesen and J. D. Love, IEEE Photonics Technol. Lett. 25, 2501 (2013).
[Crossref]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Ma, R.

Mahon, R.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Miglo, A.

Miller, S. A.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

Milton, A. F.

Mohanty, A.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

Moresco, M.

Nakai, M.

Nielson, G. N.

Nussenzveig, P.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Ou, H.

Park, D.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Patterson, P.

Peters, J. D.

Peucheret, C.

Phare, C. T.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, Optica 3, 887 (2016).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Poulton, C. V.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.

Pruessner, M.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Rabinovich, W. S.

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Ramelow, S.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

Raval, M.

Reano, R. M.

Rekhi, A.

Riesen, N.

N. Riesen and J. D. Love, IEEE Photonics Technol. Lett. 25, 2501 (2013).
[Crossref]

Rogier, H.

Rong, H.

Ros, F. D.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

Sayyah, K.

Schaffner, J.

Schmid, J. H.

Seurin, J.-F.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Shin, M. C.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

Starbuck, A.

Stern, B.

B. Stern, X. Ji, A. Dutt, and M. Lipson, Opt. Lett. 42, 4541 (2017).
[Crossref]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergmen, and M. Lipson, Optica 2, 530 (2015).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

Su, Z.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.

Subbaraman, H.

Sun, J.

Sun, P.

Sun, X.

Tang, Y.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

Trotter, D. C.

Tseng, S.-Y.

Tzuang, L. D.

Vachon, M.

Vermeulen, D.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

Vitanov, N. V.

N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).
[Crossref]

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Wang, J.

J. Wang, S. He, and D. Dai, Laser Photon. Rev. 8, L18 (2014).
[Crossref]

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 21 (2017).
[Crossref]

J. Sun, E. S. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Lett. 39, 367 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Lett. 39, 4575 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[Crossref]

C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, Opt. Express 21, 5198 (2013).
[Crossref]

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, Opt. Lett. 38, 733 (2013).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

Wendt, J. R.

White, C.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

Xu, D.-X.

Xu, G.

Xu, J.

Xu, X.

Yaacobi, A.

Yariv, A.

Young, R. W.

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

Zhang, Y.

Zhu, X.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. Chung, H. Abediasl, and H. Hashemi, IEEE J. Solid-State Circuits 53, 275 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Riesen and J. D. Love, IEEE Photonics Technol. Lett. 25, 2501 (2013).
[Crossref]

Laser Photon. Rev. (1)

J. Wang, S. He, and D. Dai, Laser Photon. Rev. 8, L18 (2014).
[Crossref]

Nat. Commun. (2)

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, Nat. Commun. 8, 14010 (2017).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, Nat. Commun. 5, 3069 (2014).
[Crossref]

Nat. Photonics (1)

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photonics 11, 200 (2017).
[Crossref]

Nature (2)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[Crossref]

Opt. Express (13)

Opt. Lett. (8)

Optica (2)

Phys. Rev. A (1)

N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).
[Crossref]

Proc. SPIE (1)

W. S. Rabinovich, P. G. Goetz, M. Pruessner, R. Mahon, M. S. Ferraro, D. Park, E. Fleet, and M. J. DePrenger, Proc. SPIE 9354, 93540B (2015).

Other (5)

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, in IEEE 15th International Conference on Group IV Photonics (GFP) (2018), pp. 1–2.

S. Chung, H. Abediasl, and H. Hashemi, in IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 262.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv:1802.04624 (2018).

U. D. Dave and M. Lipson, in Conference on Lasers and Electro- Optics (CLEO) (2019), paper SM3J.6.

Supplementary Material (1)

NameDescription
» Supplement 1       Device design, simulation, measurements and fabrication

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Multi-pass photonic structure based on mode multiplexing. (a) Schematic (not to scale) of a seven-pass structure that utilizes seven spatial modes. (b) Schematic description of the light path, illustrating mode conversion at each pass. (c) Schematic (not to scale) of a structure that converts the ${{\rm TE}_2}$ mode to the ${{\rm TE}_3}$ mode and reverses the propagation direction, while transmitting all other lower-order modes. (d) Optical microscope image of a seven-pass multi-pass structure embedded in a MZI. A resistive heater is fabricated on top of the ${{\rm SiO}_2}$ cladding to induce phase shifting via the thermo-optic effect. MC, mode converter; DC, directional coupler; WG, waveguide.
Fig. 2.
Fig. 2. Measured phase shift and bandwidth performance of multi-pass phase shifters. (a) Accumulated phase shift induced by the three-pass, five-pass, and seven-pass multi-pass thermo-optic phase shifters, extracted by measuring the transmission spectra of the MZIs. As a reference we also show a standard single-pass phase shifter (denoted by one-pass). The dashed lines are the linear fits to the data. The three-pass, five-pass, and seven-pass structures decrease power consumption by 3.3, 5.9, and 8.9 times, respectively. (b) Insertion loss for three-, five-, and seven-pass devices as a function of wavelength, extracted from the MZI transmission spectra. The dashed lines are cubic spline smoothing functions that exclude the artifacts due to the interference from facet reflections. One can see that the bandwidth in which the insertion losses remain less than 3 dB above the minimum loss is at least 100 nm for all structures. The inset shows the measured transmission spectra of the MZIs for the different multi-pass structures. The free spectral range of the interference fringes decreases as the number of passes increases, confirming an increase of the optical path length.
Fig. 3.
Fig. 3. Optical phased array containing 512 multi-pass phase shifters. (a) Schematic (not to scale) of optical phased array, showing out-of-plane beam emission (red arrows) and 2D steering ($\varphi $ and $\theta $). (b) Optical microscope image of the silicon waveguide layer of the fabricated chip, showing several stages of the binary splitter tree and a portion of the array of multi-pass phase shifter structures. (c) Packaged device, consisting of the ${8}\;{\rm mm} \times {15}\;{\rm mm}$ phased array chip wire-bonded to a silicon interposer, along with an optical fiber input. The grating emission area is highlighted in green.
Fig. 4.
Fig. 4. Measured 2D beam steering and system power consumption. (a) Characterization of the output beam in the far field. Line cuts of the $\varphi $ and $\theta $ directions show near-diffraction-limited beam divergence of ${0.15}^\circ \times {0.08}^\circ $ (diffraction limit of ${0.133}^\circ \times {0.08}^\circ $). Inset shows full 2D far-field image of the beam. (b) The measured far-field emission pattern above the chip showing a ${70}^\circ \times {6}^\circ $ field of view, demonstrating 7.5 dB peak-to-sidelobe ratio for the beam pointing toward ($ + {35}^\circ $, 45°). (c) Electrical power consumption of the multi-pass phase shifters for converged beams at different steering angles (shaded region represents 1 standard deviation from the mean). One can see that only ${1.9} \pm {0.2}\;{\rm W}$ total power is consumed for any angle in the reported field of view.

Metrics