Abstract

Integrated silicon microwave photonics offers great potential in microwave phase shifter elements, and promises compact and scalable multi-element chips that are free from electromagnetic interference. Stimulated Brillouin scattering, which was recently demonstrated in silicon, is a particularly powerful approach to induce a phase shift due to its inherent flexibility, offering an optically controllable and selective phase shift. However, to date, only moderate amounts of Brillouin gain have been achieved and theoretically this would restrict the phase shift to a few tens of degrees, significantly less than the required 360°. Here, we overcome this limitation with a phase enhancement method using RF interference, showing a 360° broadband phase shifter based on Brillouin scattering in a suspended silicon waveguide. We achieve a full 360° phase shift over a bandwidth of 15 GHz using a phase enhancement factor of 25, thereby enabling a practical broadband Brillouin phase shifter for beam forming and other applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering

Mattia Pagani, David Marpaung, Duk-Yong Choi, Steve J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 22(23) 28810-28818 (2014)

Electromechanical Brillouin scattering in integrated optomechanical waveguides

Qiyu Liu, Huan Li, and Mo Li
Optica 6(6) 778-785 (2019)

Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

David Marpaung, Blair Morrison, Mattia Pagani, Ravi Pant, Duk-Yong Choi, Barry Luther-Davies, Steve J. Madden, and Benjamin J. Eggleton
Optica 2(2) 76-83 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
    [Crossref]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  3. J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).
  4. R. C. Hansen, Phased Array Antennas (Wiley, 2009).
  5. A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors 18, 3194 (2018).
    [Crossref]
  6. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  7. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  8. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  9. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref]
  10. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
    [Crossref]
  11. C. Porzi, G. Serafino, M. Sans, F. Falconi, V. Sorianello, S. Pinna, J. E. Mitchell, M. Romagnoli, A. Bogoni, and P. Ghelfi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightwave Technol. 36, 4494–4500 (2018).
    [Crossref]
  12. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. A. Na, “On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit,” Opt. Lett. 39, 6181–6184 (2014).
    [Crossref]
  13. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
    [Crossref]
  14. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
    [Crossref]
  15. M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
    [Crossref]
  16. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  17. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  18. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  19. A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
    [Crossref]
  20. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
    [Crossref]
  21. M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett. 39, 5854–5857 (2014).
    [Crossref]
  22. M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22, 28810–28818 (2014).
    [Crossref]
  23. I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42, 1313–1316 (2017).
    [Crossref]
  24. R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  25. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [Crossref]
  26. G. Agrawal, Nonlinear Fiber Optics (Optics and Photonics) (Academic, 2006).
  27. M. B. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett. 40, 4863–4866 (2015).
    [Crossref]
  28. Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4, 418–423 (2017).
    [Crossref]
  29. A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, and B. J. Eggleton, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Sci. Rep. 7, 5932 (2017).
    [Crossref]
  30. C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
    [Crossref]
  31. E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
    [Crossref]
  32. A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
    [Crossref]
  33. Q. Li, K. Li, Y. Fu, X. Xie, Z. Yang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110 GHz bandwidth,” J. Lightwave Technol. 34, 2139–2144 (2016).
    [Crossref]
  34. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  35. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [Crossref]
  36. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
    [Crossref]
  37. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  38. N. Fujioka, T. Chu, and M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators,” J. Lightwave Technol. 28, 3115–3120(2010).
    [Crossref]
  39. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
    [Crossref]
  40. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815(1991).
    [Crossref]
  41. Y. Kokubun, “Waveguide filters and related technologies: issues and solutions for practical use in transmission systems,” J. Lightwave Technol. 36, 6–18 (2018).
    [Crossref]
  42. M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. J. Eggleton, K. Solis-Trapala, H. N. Tan, and S. Namiki, “Low noise frequency comb carriers for 64-QAM via a Brillouin comb amplifier,” Opt. Express 25, 17847–17863 (2017).
    [Crossref]
  43. A. Choudhary, M. Pelusi, D. Marpaung, T. Inoue, K. Vu, P. Ma, D.-Y. Choi, S. Madden, S. Namiki, and B. J. Eggleton, “On-chip Brillouin purification for frequency comb-based coherent optical communications,” Opt. Lett. 42, 5074–5077 (2017).
    [Crossref]

2019 (2)

2018 (6)

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors 18, 3194 (2018).
[Crossref]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

C. Porzi, G. Serafino, M. Sans, F. Falconi, V. Sorianello, S. Pinna, J. E. Mitchell, M. Romagnoli, A. Bogoni, and P. Ghelfi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightwave Technol. 36, 4494–4500 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Y. Kokubun, “Waveguide filters and related technologies: issues and solutions for practical use in transmission systems,” J. Lightwave Technol. 36, 6–18 (2018).
[Crossref]

2017 (5)

2016 (6)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
[Crossref]

Q. Li, K. Li, Y. Fu, X. Xie, Z. Yang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110 GHz bandwidth,” J. Lightwave Technol. 34, 2139–2144 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

2015 (4)

M. B. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett. 40, 4863–4866 (2015).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

2014 (3)

2013 (2)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

2012 (1)

2010 (4)

2009 (1)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

2007 (1)

2006 (3)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

1992 (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

1991 (1)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815(1991).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Optics and Photonics) (Academic, 2006).

Agrawal, G. P.

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Aryanfar, I.

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

Ayun, M. B.

Baets, R.

A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Beling, A.

Bentum, M. J.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bogoni, A.

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Burla, M.

Buttner, T. F. S.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

Campbell, J. C.

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

Casas-Bedoya, A.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Choi, D.-Y.

Choudhary, A.

Chrostowski, L.

Chu, T.

Cortés, L. R.

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

Dragone, C.

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815(1991).
[Crossref]

Eggleton, B. J.

I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42, 1313–1316 (2017).
[Crossref]

A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, and B. J. Eggleton, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Sci. Rep. 7, 5932 (2017).
[Crossref]

A. Choudhary, M. Pelusi, D. Marpaung, T. Inoue, K. Vu, P. Ma, D.-Y. Choi, S. Madden, S. Namiki, and B. J. Eggleton, “On-chip Brillouin purification for frequency comb-based coherent optical communications,” Opt. Lett. 42, 5074–5077 (2017).
[Crossref]

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4, 418–423 (2017).
[Crossref]

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. J. Eggleton, K. Solis-Trapala, H. N. Tan, and S. Namiki, “Low noise frequency comb carriers for 64-QAM via a Brillouin comb amplifier,” Opt. Express 25, 17847–17863 (2017).
[Crossref]

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22, 28810–28818 (2014).
[Crossref]

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett. 39, 5854–5857 (2014).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

Falconi, F.

Fathpour, S.

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Fu, Y.

Fujioka, N.

Gertler, S.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Ghelfi, P.

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Hansen, R. C.

R. C. Hansen, Phased Array Antennas (Wiley, 2009).

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Heideman, R. G.

Hoekman, M.

Hulzinga, A.

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Inoue, T.

Ishizaka, M.

Jalali, B.

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Jeong, S.-H.

Jorna, P.

Kabakova, I. V.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

Khan, S.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Kharel, P.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Kokubun, Y.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kurahashi, T.

Kuyken, B.

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Laer, R. V.

A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]

Leinse, A.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Li, K.

Li, M.

Li, Q.

Lim, S.

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors 18, 3194 (2018).
[Crossref]

Lin, Q.

Liu, K.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Liu, Y.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Madden, S. J.

Marpaung, D.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. J. Eggleton, K. Solis-Trapala, H. N. Tan, and S. Namiki, “Low noise frequency comb carriers for 64-QAM via a Brillouin comb amplifier,” Opt. Express 25, 17847–17863 (2017).
[Crossref]

A. Choudhary, M. Pelusi, D. Marpaung, T. Inoue, K. Vu, P. Ma, D.-Y. Choi, S. Madden, S. Namiki, and B. J. Eggleton, “On-chip Brillouin purification for frequency comb-based coherent optical communications,” Opt. Lett. 42, 5074–5077 (2017).
[Crossref]

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4, 418–423 (2017).
[Crossref]

A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, and B. J. Eggleton, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Sci. Rep. 7, 5932 (2017).
[Crossref]

I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42, 1313–1316 (2017).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett. 39, 5854–5857 (2014).
[Crossref]

M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22, 28810–28818 (2014).
[Crossref]

Marpaung, D. A. I.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Meijerink, A.

Meijerink, R.

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Merklein, M.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mitchell, J. E.

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Morito, K.

Morrison, B.

A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, and B. J. Eggleton, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Sci. Rep. 7, 5932 (2017).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

Na, J. A.

Namiki, S.

Naqvi, A.

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors 18, 3194 (2018).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Ortega, B.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Pagani, M.

Painter, O. J.

Pant, R.

Pastor, D.

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Pelusi, M.

Pinchas, M.

Pinna, S.

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Porzi, C.

Poulton, C. G.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Qubaisi, K. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Roeloffzen, C. G. H.

Romagnoli, M.

Rosenberg, S.

Safavi-Naeini, A. H.

Sans, M.

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Schwarzbaum, A.

Sekiguchi, S.

Serafino, G.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Solis-Trapala, K.

Sorger, V. J.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Sorianello, V.

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Steel, M. J.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

Sternklar, S.

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

Tan, H. N.

Tanaka, S.

Tanaka, Y.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Thourhout, D. V.

A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

van Etten, W.

Van Laer, R.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

Van Stryland, E. W.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Verpoorte, J.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Volakis, J.

J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

Vu, K.

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, X.

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wolff, C.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

Xie, X.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Yang, Z.

Yao, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Ye, C. R.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhuang, L.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,” IEEE J. Sel. Top. Quantum Electron. 22, 336–346 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815(1991).
[Crossref]

J. Lightwave Technol. (8)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
[Crossref]

N. Fujioka, T. Chu, and M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators,” J. Lightwave Technol. 28, 3115–3120(2010).
[Crossref]

Q. Li, K. Li, Y. Fu, X. Xie, Z. Yang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110 GHz bandwidth,” J. Lightwave Technol. 34, 2139–2144 (2016).
[Crossref]

Y. Kokubun, “Waveguide filters and related technologies: issues and solutions for practical use in transmission systems,” J. Lightwave Technol. 36, 6–18 (2018).
[Crossref]

C. Porzi, G. Serafino, M. Sans, F. Falconi, V. Sorianello, S. Pinna, J. E. Mitchell, M. Romagnoli, A. Bogoni, and P. Ghelfi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightwave Technol. 36, 4494–4500 (2018).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Laser Photon. Rev. (1)

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photon. Rev. 9, 172–194 (2015).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nano Lett. (1)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref]

Nat. Commun. (1)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Nat. Photonics (5)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Nature (2)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

New J. Phys. (1)

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 25006 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Optica (3)

Sci. Rep. (1)

A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, and B. J. Eggleton, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Sci. Rep. 7, 5932 (2017).
[Crossref]

Sensors (1)

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors 18, 3194 (2018).
[Crossref]

Other (3)

G. Agrawal, Nonlinear Fiber Optics (Optics and Photonics) (Academic, 2006).

J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

R. C. Hansen, Phased Array Antennas (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Block diagram of a microwave photonic phase shifter. An input RF signal is modulated onto an optical carrier. The phase of that microwave envelope is shifted in the optical domain using Brillouin scattering in a silicon waveguide (inset) that leads to a phase shifted RF output upon photodetection. (b) Time domain representation of an optical carrier modulated by an RF signal and (c) the according frequency domain representation. Shifting the phase of the optical sideband results in a phase shifted RF output signal upon beating the optical carrier and sideband at the photodetector. SB, sideband; C, carrier; MOD, modulator; PD, photodetector; ν , frequency; Si, silicon; SiO 2 , silica.
Fig. 2.
Fig. 2. (a) Narrowband RF tone applied to the optical carrier. The sideband beats with the optical carrier to generate an RF tone in the electrical domain (green). The phase of the RF tone experiences a phase shift of θ when a phase shift of θ is applied to the carrier. (b) A broadband RF signal modulated on the optical carrier. Similarly, the sideband will beat with the carrier to produce a broadband output signal. Similarly, the phase of the broadband signal experiences a phase shift of θ when a phase shift of θ is applied to the carrier.
Fig. 3.
Fig. 3. (a) Basic scheme of the two optical carriers ( C 1 , C 2 ) and sidebands ( SB 1 , SB 2 ) used in the enhanced phase shifter scheme. The lower sideband of C 2 and the upper sideband of C 1 are removed by a filter, resulting in out-of-phase RF signals. A Brillouin pump induces an amplification and phase shift of C 1 . (b) Optical and RF phase space representation of a typical MWP phase shifter. An optical phase shift θ 1 applied to one of the sidebands relates directly to a shift θ 1 of the RF phase. (c) Enhanced MWP phase shifter based on interference and RF vector addition in phase space. As can be seen in the phase space diagram, a small optical phase shift θ 1 can lead to a much larger RF phase shift θ 2 of the resultant vector RF net (red arrow).
Fig. 4.
Fig. 4. Schematic of the experimental setup. Laser 1 is split into two arms; one is used as a carrier for the input RF signal and the other one acts as the Brillouin pump. Laser 2 is added to achieve the phase enhancement. Inset: scanning electron microscope (SEM) imagine of a suspended silicon waveguide. ISO, optical isolator; BPF, band-pass filter; DPMZM, dual-parallel Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; VNA, vector network analyzer; OPM, optical powermeter; OSA, optical spectrum analyzer; PD, photodetector; PM, phase modulator; VCO, voltage controlled oscillator; Si, silicon chip.
Fig. 5.
Fig. 5. Phase profile without phase enhancement (blue) and with phase enhancement (orange).
Fig. 6.
Fig. 6. (a) Broadband phase shift without phase enhancement. (b) Broadband phase shift with an enhancement factor of 25 (a low-pass filter was applied to the data).
Fig. 7.
Fig. 7. Amplitude variation for a phase shift range of 360° using a factor of 25 phase enhancement. The data is normalized to the underlying RF link.
Fig. 8.
Fig. 8. Artist’s impression of the phase shifting scheme entirely integrated on a chip. AWG, arrayed waveguide grating; SWG, suspended waveguide; PD, photodetector; PM, phase modulator; DPMZM, dual-parallel Mach–Zehnder modulator; RR, ring resonator.

Metrics