Abstract

Ghost imaging constructs an image by correlating two signals: one that interacts with an object but possesses no spatial information, and the other that contains spatial information but does not interact with the object. Ghost imaging can be extended into the time domain by using laser intensity fluctuations to reconstruct an unknown time-varying pattern, but this requires the measurement of laser fluctuations on ultrafast timescales, a significant limitation at wavelengths where ultrafast detectors are not available. We overcome this by using wavelength conversion to shift the probe laser into a spectral region where ultrafast detectors are available, and we apply this technique to image a temporal object at 2 μm. Our results demonstrate that temporal correlation information can be transferred to an arbitrary spectral region, opening possibilities for ultrafast ghost imaging at new wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temporal ghost imaging with random fiber lasers

Han Wu, Bing Han, Zinan Wang, Goëry Genty, Guoying Feng, and Houkun Liang
Opt. Express 28(7) 9957-9964 (2020)

Blind ghost imaging

Alba M. Paniagua-Diaz, Ilya Starshynov, Nikos Fayard, Arthur Goetschy, Romain Pierrat, Rémi Carminati, and Jacopo Bertolotti
Optica 6(4) 460-464 (2019)

Ghost optical coherence tomography

Caroline G. Amiot, Piotr Ryczkowski, Ari T. Friberg, John M. Dudley, and Goëry Genty
Opt. Express 27(17) 24114-24122 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  2. B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
    [Crossref]
  3. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
    [Crossref]
  5. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
    [Crossref]
  7. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
    [Crossref]
  8. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010).
    [Crossref]
  9. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  10. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–4 (2008).
    [Crossref]
  11. B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29, 782–789 (2012).
    [Crossref]
  12. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
    [Crossref]
  13. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref]
  14. F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
    [Crossref]
  15. L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photon. Res. 4, 240–244 (2016).
    [Crossref]
  16. P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
    [Crossref]
  17. C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
    [Crossref]
  18. P. Janassek, S. Blumenstein, and W. Elsässer, “Recovering a hidden polarization by ghost polarimetry,” Opt. Lett. 43, 883–886 (2018).
    [Crossref]
  19. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27, 2549–2555 (2010).
    [Crossref]
  20. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
    [Crossref]
  21. Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111, 061106 (2017).
    [Crossref]
  22. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
    [Crossref]
  23. D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
    [Crossref]
  24. S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
    [Crossref]
  25. S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
    [Crossref]
  26. X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).
  27. Z. Pan and L. Zhang, “Optical cryptography-based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
    [Crossref]
  28. J. Wu, F.-X. Wang, W. Chen, S. Wang, D.-Y. He, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Temporal ghost imaging for quantum device evaluation,” Opt. Lett. 44, 2522–2525 (2019).
    [Crossref]
  29. Z. Bo, W. Gong, and S. Han, “A new focal-plane 3D imaging method based on temporal ghost imaging,” arXiv:1805.06481 (2018).
  30. K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
    [Crossref]
  31. S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
    [Crossref]
  32. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
    [Crossref]
  33. H. E. Soper, “On the probable error of the correlation coefficient to a second approximation,” Biometrika 9, 91–115 (1913).
    [Crossref]
  34. I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
    [Crossref]
  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).
  36. A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti, “Blind ghost imaging,” Optica 6, 460–464 (2019).
    [Crossref]
  37. M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
    [Crossref]
  38. L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
    [Crossref]

2019 (3)

2018 (4)

P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
[Crossref]

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref]

P. Janassek, S. Blumenstein, and W. Elsässer, “Recovering a hidden polarization by ghost polarimetry,” Opt. Lett. 43, 883–886 (2018).
[Crossref]

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

2017 (6)

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Z. Pan and L. Zhang, “Optical cryptography-based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111, 061106 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

2016 (4)

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photon. Res. 4, 240–244 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

2015 (1)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

2014 (1)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2012 (2)

2010 (3)

2009 (1)

K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

2008 (2)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–4 (2008).
[Crossref]

2005 (1)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

2000 (1)

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

1913 (1)

H. E. Soper, “On the probable error of the correlation coefficient to a second approximation,” Biometrika 9, 91–115 (1913).
[Crossref]

Abouraddy, A. F.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Amiot, C.

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bertolotti, J.

Blumenstein, S.

P. Janassek, S. Blumenstein, and W. Elsässer, “Recovering a hidden polarization by ghost polarimetry,” Opt. Lett. 43, 883–886 (2018).
[Crossref]

P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
[Crossref]

Bo, Z.

Z. Bo, W. Gong, and S. Han, “A new focal-plane 3D imaging method based on temporal ghost imaging,” arXiv:1805.06481 (2018).

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Boyd, R. W.

K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

Brum, A. A.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Carminati, R.

Chan, K. W. C.

K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Chen, W.

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Cryan, J. P.

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Dam, J. S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

de S. Menezes, L.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
[Crossref]

Denis, S.

Devaux, F.

Dong, S.

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

Dudley, J. M.

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Elsässer, W.

P. Janassek, S. Blumenstein, and W. Elsässer, “Recovering a hidden polarization by ghost polarimetry,” Opt. Lett. 43, 883–886 (2018).
[Crossref]

P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
[Crossref]

Erkmen, B. I.

Fayard, N.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Fontana, G.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Friberg, A. T.

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27, 2549–2555 (2010).
[Crossref]

Fukatsu, S.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111, 061106 (2017).
[Crossref]

Gatti, A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

Genty, G.

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Goetschy, A.

Gomes, A. S. L.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Gong, W.

Z. Bo, W. Gong, and S. Han, “A new focal-plane 3D imaging method based on temporal ghost imaging,” arXiv:1805.06481 (2018).

González, I. R. R.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Guo, G.-C.

Han, S.

Z. Bo, W. Gong, and S. Han, “A new focal-plane 3D imaging method based on temporal ghost imaging,” arXiv:1805.06481 (2018).

Han, Z.-F.

He, D.-Y.

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Huang, Y.

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Janassek, P.

P. Janassek, S. Blumenstein, and W. Elsässer, “Recovering a hidden polarization by ghost polarimetry,” Opt. Lett. 43, 883–886 (2018).
[Crossref]

P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
[Crossref]

Jiang, S.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Karmakar, S.

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

Kashyap, R.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Lane, T. J.

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

Lantz, E.

Lapkiewicz, R.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Lemos, G. B.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Li, H.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Li, S.

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

Lima, B. C.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Liu, X.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Long, T.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Lugiato, L. A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Macêdo, A. M. S.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Mancinelli, M.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Meng, X.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
[Crossref]

Moreau, P.-A.

O’sullivan, M. N.

K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Olivieri, L.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

O-oka, Y.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111, 061106 (2017).
[Crossref]

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Pan, Z.

Z. Pan and L. Zhang, “Optical cryptography-based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

Paniagua-Diaz, A. M.

Pasquazi, A.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

Pavesi, L.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Peccianti, M.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

Pedersen, C.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Peng, J.

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

Piccione, S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Pierrat, R.

Pincheira, P. I. R.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Raposo, E. P.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Ratner, D.

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

Ryczkowski, P.

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Sergienko, A. V.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Setälä, T.

Shapiro, J. H.

Shih, Y.

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shirai, T.

Shu, R.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Soper, H. E.

H. E. Soper, “On the probable error of the correlation coefficient to a second approximation,” Biometrika 9, 91–115 (1913).
[Crossref]

Starshynov, I.

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Stupakov, G.

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

Sun, B.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Teich, M. C.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Tidemand-Lichtenberg, P.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Totero Gongora, J. S.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

Trenti, A.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Vasconcelos, G. L.

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, F.-X.

Wang, H.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Wang, L.

Wang, S.

Wang, Y.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Wang, Z.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Welsh, S. S.

Wu, J.

Xue, R.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Yang, X.

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

Yao, X.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Yin, Z.-Q.

You, L.

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Zeilinger, A.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Zhang, L.

Z. Pan and L. Zhang, “Optical cryptography-based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

Zhang, W.

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Zhao, S.

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

ACS Photon. (1)

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-resolved nonlinear ghost imaging,” ACS Photon. 5, 3379–3388 (2018).
[Crossref]

Adv. Opt. Photon. (1)

APL Photon. (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Magnified time-domain ghost imaging,” APL Photon. 2, 046102 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111, 061106 (2017).
[Crossref]

Biometrika (1)

H. E. Soper, “On the probable error of the correlation coefficient to a second approximation,” Biometrika 9, 91–115 (1913).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Pan and L. Zhang, “Optical cryptography-based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (3)

I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, “Turbulence hierarchy in a random fibre laser,” Nat. Commun. 8, 15731 (2017).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Nat. Photonics (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Nature (1)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (2)

Photon. Res. (1)

Phys. Rev. A (7)

K. W. C. Chan, M. N. O’sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–4 (2008).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1–4 (2008).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 1–10 (2004).
[Crossref]

Phys. Rev. Appl. (1)

P. Janassek, S. Blumenstein, and W. Elsässer, “Ghost spectroscopy with classical thermal light emitted by a superluminescent diode,” Phys. Rev. Appl. 9, 021001 (2018).
[Crossref]

Phys. Rev. Lett. (3)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-Photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Phys. Rev. X (1)

D. Ratner, J. P. Cryan, T. J. Lane, S. Li, and G. Stupakov, “Pump-probe ghost imaging with SASE FELs,” Phys. Rev. X 9, 011045 (2019).
[Crossref]

Sci. Rep. (2)

S. Jiang, Y. Wang, T. Long, X. Meng, X. Yang, R. Shu, and B. Sun, “Information security scheme based on computational temporal ghost imaging,” Sci. Rep. 7, 7676 (2017).
[Crossref]

S. Dong, W. Zhang, Y. Huang, and J. Peng, “Long-distance temporal quantum ghost imaging over optical fibers,” Sci. Rep. 6, 26022 (2016).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (3)

X. Yao, X. Liu, R. Xue, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, and W. Zhang, “Multi-bit quantum digital signature based on quantum temporal ghost imaging,” arXiv:1901.03004 (2019).

Z. Bo, W. Gong, and S. Han, “A new focal-plane 3D imaging method based on temporal ghost imaging,” arXiv:1805.06481 (2018).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup for temporal ghost imaging with wavelength conversion, showing the random laser source (yellow box), the reference arm where the laser temporal fluctuations are wavelength converted and measured in real time (blue box), and the test arm where the temporal object is probed by the laser fluctuations (green box). BS, beam splitter; P, polarizer; BBO, β-barium borate crystal; SHG, second-harmonic generation; FS, filters set; APD, avalanche photodiode; AWG, arbitrary waveform generator; EOM, electro-optic modulator; OSC, oscilloscope; LD, laser diode; com, pump combiner; HR FBG, high-reflective fiber Bragg grating; LR FBG, low-reflective fiber Bragg grating; TDF, thulium-doped fiber.
Fig. 2.
Fig. 2. (a) Comparison of time-resolved intensity fluctuations at the laser output at 2 μm (red) and after frequency doubling at 1 μm in the BBO crystal (blue). (b) Time-to-time intensity fluctuations cross-correlation between the laser output at 2 μm and after frequency doubling at 1 μm, calculated over 8000 temporal windows. Note that the intensity fluctuations at 2 μm have been arbitrarily shifted (and scaled) as the fast detector used to record these is not DC-blocked.
Fig. 3.
Fig. 3. Correlations of the random intensity fluctuations at 1 μm. (a) Time-to-time intensity fluctuations correlation map calculated over 8000 temporal windows. (b) Realization-to-realization correlation map calculated over a 30 ns temporal window. (c) Probability density function of the laser temporal intensity fluctuations relative to the mean (yellow histogram bars), fitted with a generalized extreme value distribution (red solid line).
Fig. 4.
Fig. 4. Experimental ghost image of temporal objects generated from 8000 realizations. (a) and (b) are two examples of different bit sequences. The solid blue lines represent the ghost image. The red dashed lines correspond to the direct measurement results with the 2 μm fast detector.
Fig. 5.
Fig. 5. Retrieved ghost image (blue solid line) as a function of the number of realizations as indicated compared with the direct control measurement with the 2 μm fast detector (red dashed line). The calculated least square misfit between the directly measured and retrieved temporal sequence for 200, 500, 1000, and 8000 realizations is 0.142, 0.113, 0.09, and 0.084, respectively. The least squares error is defined as ε=K1[i=1K(MiRi)]1/2, where M and R are the measured and retrieved temporal sequences, and K is the number of points in the sequence [35].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C(t)=ΔIref2ω(t)ΔItestωN[ΔIref2ω(t)]2N[ΔItestω]2N,

Metrics