Abstract

We demonstrate that avalanche ionization breakdown of air with picosecond mid-infrared (mid-IR) laser pulses is an exceptionally sensitive and quantitative probe of extremely low concentrations of charged species. By exponentially increasing the electron density in the vicinity of a single seed atom or molecule to detectable levels, mid-IR electron avalanche is an analogue of single photon detection in photomultiplier tubes and can be useful in a range of applications. We apply the technique to meter-scale standoff detection of a radioactive source, sensitive to extremely low concentrations of radiation-induced negative ions down to 103cm3, limited only by background. By imaging the location of spatially isolated avalanche breakdown sites, we directly measure these low densities and benchmark the performance of standoff detection diagnostics. We discuss implementation of this radiation detection scheme at ranges of 10–100 m and adapting the avalanche probe to detection of other low-density plasmas.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy

Alexander W. Schill, David A. Heaps, Dimitra N. Stratis-Cullum, Bradley R. Arnold, and Paul M. Pellegrino
Opt. Express 15(21) 14044-14056 (2007)

Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis

Abdul Kalam Shaik, Nageswara Rao Epuru, Hamad Syed, Chandu Byram, and Venugopal Rao Soma
Opt. Express 26(7) 8069-8083 (2018)

Near- and mid-IR ultrashort laser pulse filamentation in a molecular atmosphere: a comparative analysis

Y. E. Geints and A. A. Zemlyanov
Appl. Opt. 56(5) 1397-1404 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
    [Crossref]
  2. M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
    [Crossref]
  3. S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
    [Crossref]
  4. R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
    [Crossref]
  5. X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
    [Crossref]
  6. T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
    [Crossref]
  7. R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
    [Crossref]
  8. F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
    [Crossref]
  9. J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [Crossref]
  10. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).
  11. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).
  12. S. S. Nabiev and L. A. Palkina, “Current trends in the development of remote methods of detecting radioactive and highly toxic substances,” in The Atmosphere and Ionosphere, V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin, eds. (Springer, 2014), pp. 113–200.
  13. J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).
  14. Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
    [Crossref]
  15. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
    [Crossref]
  16. A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
    [Crossref]
  17. E. Puckrin and J. M. Thériault, “Passive standoff detection of radiological products by Fourier-transform infrared radiometry,” Opt. Lett. 29, 1375–1377 (2004).
    [Crossref]
  18. V. L. Granatstein and G. S. Nusinovich, “Detecting excess ionizing radiation by electromagnetic breakdown of air,” J. Appl. Phys. 108, 063304 (2010).
    [Crossref]
  19. P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
    [Crossref]
  20. J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
    [Crossref]
  21. R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
    [Crossref]
  22. G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
    [Crossref]
  23. Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
    [Crossref]
  24. G. S. Nusinovich, “Remote detection of concealed radioactive materials by using focused powerful terahertz radiation,” J. Infrared Millim. Terahertz Waves 37, 515–535 (2016).
    [Crossref]
  25. D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
    [Crossref]
  26. D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.
  27. M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
    [Crossref]
  28. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).
  29. Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
    [Crossref]
  30. Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
    [Crossref]
  31. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19, 16866–16871 (2011).
    [Crossref]
  32. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755 (2011).
    [Crossref]
  33. N. M. Kroll and K. M. Watson, “Multiphoton detachment of negative ions,” (1974).
  34. V. A. Mohnen, “Discussion of the formation of major positive and negative ions up to the 50  km level,” Pure Appl. Geophys. 84, 141–151 (1971).
    [Crossref]
  35. M. L. Huertas and J. Fontan, “Formation of stable positive and negative small ions of tropospheric interest,” Atmos. Environ. 16, 2521–2527 (1982).
    [Crossref]
  36. J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
    [Crossref]
  37. J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
    [Crossref]
  38. G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
    [Crossref]
  39. National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html .
  40. P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103(2011).
    [Crossref]
  41. V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
    [Crossref]
  42. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions,” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [Crossref]
  43. J. D. Huba, “Weakly ionized plasmas,” in NRL Plasma Formulary Supported by The Office of Naval Research (Naval Research Laboratory, 2013), p. 39.
  44. A. W. Ali, “Electron energy loss rates in N2, O2, and air,” NRL Memorandum Report (1984).
  45. J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).
  46. J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
    [Crossref]
  47. M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.
  48. G. P. DiComo, “Nonlinear self-channeling of high-power lasers through turbulent atmospheres,” Doctoral Dissertation (University of Maryland, 2018).

2019 (2)

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).

2018 (2)

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

2017 (2)

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

2016 (3)

G. S. Nusinovich, “Remote detection of concealed radioactive materials by using focused powerful terahertz radiation,” J. Infrared Millim. Terahertz Waves 37, 515–535 (2016).
[Crossref]

J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
[Crossref]

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

2015 (1)

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

2014 (1)

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

2013 (1)

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

2012 (1)

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

2011 (5)

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103(2011).
[Crossref]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19, 16866–16871 (2011).
[Crossref]

2010 (2)

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

V. L. Granatstein and G. S. Nusinovich, “Detecting excess ionizing radiation by electromagnetic breakdown of air,” J. Appl. Phys. 108, 063304 (2010).
[Crossref]

2009 (5)

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
[Crossref]

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

2008 (1)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

2006 (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
[Crossref]

2004 (3)

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

E. Puckrin and J. M. Thériault, “Passive standoff detection of radiological products by Fourier-transform infrared radiometry,” Opt. Lett. 29, 1375–1377 (2004).
[Crossref]

2002 (2)

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

1999 (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

1992 (1)

1987 (1)

1982 (1)

M. L. Huertas and J. Fontan, “Formation of stable positive and negative small ions of tropospheric interest,” Atmos. Environ. 16, 2521–2527 (1982).
[Crossref]

1971 (1)

V. A. Mohnen, “Discussion of the formation of major positive and negative ions up to the 50  km level,” Pure Appl. Geophys. 84, 141–151 (1971).
[Crossref]

1967 (1)

M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
[Crossref]

Abdollahpour, D.

Ali, A. W.

A. W. Ali, “Electron energy loss rates in N2, O2, and air,” NRL Memorandum Report (1984).

Ališauskas, S.

Andrews, H. R.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Andriukaitis, G.

Antonsen, T. M.

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

Apollonov, V. V.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Balciunas, T.

Baltuška, A.

Bespalov, V. G.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Bray, N.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Bryan, S. A.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Cao, Y.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Chen, D.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Chen, F. F.

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).

Chen, M.-C.

Chen, Y.-H.

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

Choe, M. S.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Choi, E.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Clifford, E. T. H.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Corbey, J. F.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Craig, W. W.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Cremers, D. A.

Dai, J. M.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

DiComo, G.

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

DiComo, G. P.

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

G. P. DiComo, “Nonlinear self-channeling of high-power lasers through turbulent atmospheres,” Doctoral Dissertation (University of Maryland, 2018).

Dimant, Y. S.

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

Ding, F.

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Dolin, L. S.

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Dreicer, J. S.

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

Elizarov, V. V.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Elle, J.

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

Ellison, G. B.

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

Farbis, L.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Feder, L.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Firsov, K. N.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Fontan, J.

M. L. Huertas and J. Fontan, “Formation of stable positive and negative small ions of tropospheric interest,” Atmos. Environ. 16, 2521–2527 (1982).
[Crossref]

M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
[Crossref]

Galassi, M.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Gallagher, S.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Goers, A.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Gonzalez, J.

M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
[Crossref]

Granatstein, V. L.

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

V. L. Granatstein and G. S. Nusinovich, “Detecting excess ionizing radiation by electromagnetic breakdown of air,” J. Appl. Phys. 108, 063304 (2010).
[Crossref]

Grishkanich, A. S.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Gusarov, A. S.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Hafizi, B.

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

Harris, B.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Helle, M. H.

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

Hine, G.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Hinterhofer, T.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Ho, I. C.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Hoctor, R.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Hofstätter, M.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Hoover, A.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Horn, B.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Horn, B. K. P.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Huang, X.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Huba, J. D.

J. D. Huba, “Weakly ionized plasmas,” in NRL Plasma Formulary Supported by The Office of Naval Research (Naval Research Laboratory, 2013), p. 39.

Huertas, M. L.

M. L. Huertas and J. Fontan, “Formation of stable positive and negative small ions of tropospheric interest,” Atmos. Environ. 16, 2521–2527 (1982).
[Crossref]

M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
[Crossref]

Hummelt, J.

J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
[Crossref]

Hynes, M. V.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Ilander, T.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Isaacs, J.

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).

J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
[Crossref]

Ivan, A.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Johnson, T. J.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Juusela, M.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Kapteyn, H. C.

Karhunen, T.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Karpowicz, N.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Kascheev, S. V.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Kashyn, D. G.

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Katajainen, T.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

Kazantsev, S. Yu.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Kim, D.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Kim, S. G.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Kononov, I. G.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Kroll, N. M.

N. M. Kroll and K. M. Watson, “Multiphoton detachment of negative ions,” (1974).

Lanza, R.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Lanza, R. C.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Lee, I.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Lehtinen, J.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Li, J.

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Li, L.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Liu, J.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Locklin, D.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Lu, X. F.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Madden, N. W.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Mansour, K.

McDevitt, D.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

McElroy, J.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Meng, J.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Miao, B.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Miao, C.

J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
[Crossref]

Milbrath, B.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Milchberg, H.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Milchberg, H. M.

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

Miles, R. B.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
[Crossref]

Mocko, M.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Mohnen, V. A.

V. A. Mohnen, “Discussion of the formation of major positive and negative ions up to the 50  km level,” Pure Appl. Geophys. 84, 141–151 (1971).
[Crossref]

Moloney, J. V.

P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103(2011).
[Crossref]

Murnane, M. M.

Nabiev, S. S.

S. S. Nabiev and L. A. Palkina, “Current trends in the development of remote methods of detecting radioactive and highly toxic substances,” in The Atmosphere and Ionosphere, V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin, eds. (Springer, 2014), pp. 113–200.

Nandi, S.

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

Nemzek, R. J.

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

Niemelä, J.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Nieters, E.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Nusinovich, G.

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

Nusinovich, G. S.

G. S. Nusinovich, “Remote detection of concealed radioactive materials by using focused powerful terahertz radiation,” J. Infrared Millim. Terahertz Waves 37, 515–535 (2016).
[Crossref]

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

V. L. Granatstein and G. S. Nusinovich, “Detecting excess ionizing radiation by electromagnetic breakdown of air,” J. Appl. Phys. 108, 063304 (2010).
[Crossref]

Palastro, J.

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

Palastro, J. P.

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

Palkina, L. A.

S. S. Nabiev and L. A. Palkina, “Current trends in the development of remote methods of detecting radioactive and highly toxic substances,” in The Atmosphere and Ionosphere, V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin, eds. (Springer, 2014), pp. 113–200.

Palmer, D.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Papazoglou, D. G.

Penano, J.

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

Peñano, J.

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

Peräjärvi, K.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Pfennigbauer, M.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Pöllänen, R.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Polyakov, D. N.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Polynkin, P.

P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103(2011).
[Crossref]

Popmintchev, T.

Pu, R.

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Puckrin, E.

Pugžlys, A.

Qiao, F.

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Rienstra-Kiracofe, J. C.

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

Rintala, K.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Romero-Talamas, C. A.

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

Ross, W.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Rothbacher, D.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Saifulin, A. V.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Salehi, F.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Sawant, A.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Schaefer, H. F.

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

Scharer, J.

J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
[Crossref]

Schmitt-Sody, A.

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

Schraml, S.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Schultz, L. J.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Schwartz, R. M.

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

Shneider, M. N.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
[Crossref]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Smith, W.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Soileau, M. J.

Song, A.

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Song, G.

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Sprangle, P.

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).

J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
[Crossref]

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

Su, Y. F.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Suntsov, S.

Sweet, L. E.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Tang, X. B.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Thériault, J. M.

Toivonen, H.

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

Tonkyn, R. G.

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

Toolin, M.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Torney, D. C.

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

Tornga, S.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Tschumper, G. S.

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

Tzortzakis, S.

Ullrich, A.

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

Van Stryland, E. W.

Varma, S.

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

Vasiev, S. K.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Vasilyak, L. M.

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Wachter, J. R.

Wahlstrand, J.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Wakeford, D.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Wallace, M. S.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Wang, P.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Warnock, T. T.

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

Watson, K. M.

N. M. Kroll and K. M. Watson, “Multiphoton detachment of negative ions,” (1974).

Way, J.

J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
[Crossref]

Wehe, D.

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

Wen, L. S.

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Wittbrodt, M.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Woodbury, D.

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

Yin, K.

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Yu, D.

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Zelakiewicz, S.

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Zhang, H.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Zhang, X.-C.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Zhang, Z.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
[Crossref]

Zhevlakov, A. P.

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

Zigler, A.

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

Ziock, K. P.

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

Appl. Phys. Lett. (2)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[Crossref]

P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103(2011).
[Crossref]

Appl. Radiat. Isot. (2)

R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, and M. Juusela, “Radiation surveillance using an unmanned aerial vehicle,” Appl. Radiat. Isot. 67, 340–344 (2009).
[Crossref]

X. B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. S. Wen, and D. Chen, “Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers,” Appl. Radiat. Isot. 110, 100–108 (2016).
[Crossref]

Appl. Spectrosc. (1)

Atmos. Environ. (2)

M. L. Huertas, J. Fontan, and J. Gonzalez, “Evolution times of tropospheric negative ions,” Atmos. Environ. 12, 2351–2362 (1967).
[Crossref]

M. L. Huertas and J. Fontan, “Formation of stable positive and negative small ions of tropospheric interest,” Atmos. Environ. 16, 2521–2527 (1982).
[Crossref]

Chem. Rev. (1)

J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and molecular electron affinities: photoelectron experiments and theoretical calculations,” Chem. Rev. 102, 231–282 (2002).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

K. P. Ziock, W. W. Craig, L. Farbis, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, “Large area imaging detector for long-range, passive detection of fissile material,” IEEE Trans. Nucl. Sci. 51, 2238–2244 (2004).
[Crossref]

R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl. Sci. 51, 1693–1700 (2004).
[Crossref]

J. Appl. Phys. (6)

J. Way, J. Hummelt, and J. Scharer, “Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser,” J. Appl. Phys. 106, 083303 (2009).
[Crossref]

G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, “Breakdown-prone volume in terahertz wave beams,” J. Appl. Phys. 113, 233303 (2013).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
[Crossref]

V. L. Granatstein and G. S. Nusinovich, “Detecting excess ionizing radiation by electromagnetic breakdown of air,” J. Appl. Phys. 108, 063304 (2010).
[Crossref]

G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials,” J. Appl. Phys. 109, 083303 (2011).
[Crossref]

Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, “Propagation of gamma rays and production of free electrons in air,” J. Appl. Phys. 112, 083303 (2012).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

G. S. Nusinovich, “Remote detection of concealed radioactive materials by using focused powerful terahertz radiation,” J. Infrared Millim. Terahertz Waves 37, 515–535 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

D. Kim, D. Yu, A. Sawant, M. S. Choe, I. Lee, S. G. Kim, and E. Choi, “Remote detection of radioactive material using high-power pulsed electromagnetic radiation,” Nat. Commun. 8, 15394 (2017).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

S. Zelakiewicz, R. Hoctor, A. Ivan, W. Ross, E. Nieters, W. Smith, D. McDevitt, M. Wittbrodt, and B. Milbrath, “SORIS—a standoff radiation imaging system,” Nucl. Instrum. Methods Phys. Res. A 652, 5–9(2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Plasmas (2)

P. Sprangle, B. Hafizi, H. M. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014).
[Crossref]

J. Isaacs, C. Miao, and P. Sprangle, “Remote monostatic detection of radioactive material by laser-induced breakdown,” Phys. Plasmas 23, 033507 (2016).
[Crossref]

Phys. Rev. A (1)

J. Peñano, J. P. Palastro, B. Hafizi, M. H. Helle, and G. P. DiComo, “Self-channeling of high-power laser pulses through strong atmospheric turbulence,” Phys. Rev. A 96, 013829 (2017).
[Crossref]

Phys. Rev. Lett. (1)

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105, 215005 (2010).
[Crossref]

Proc. SPIE (5)

Y. F. Su, R. G. Tonkyn, L. E. Sweet, J. F. Corbey, S. A. Bryan, and T. J. Johnson, “Characterization of uranium ore concentrate chemical composition via Raman spectroscopy,” Proc. SPIE 10629, 106290G (2018).
[Crossref]

A. S. Grishkanich, V. G. Bespalov, S. K. Vasiev, A. S. Gusarov, S. V. Kascheev, V. V. Elizarov, and A. P. Zhevlakov, “Monitoring radioactive contamination by hyperspectral lidar,” Proc. SPIE 9486, 94860X (2015).
[Crossref]

M. V. Hynes, M. Toolin, B. Harris, J. McElroy, M. S. Wallace, L. J. Schultz, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, D. Wakeford, H. R. Andrews, E. T. H. Clifford, L. Li, N. Bray, D. Locklin, R. Lanza, B. Horn, and D. Wehe, “The Raytheon-SORDS trimordal imager,” Proc. SPIE 7310, 731003 (2009).
[Crossref]

T. Hinterhofer, M. Pfennigbauer, A. Ullrich, D. Rothbacher, S. Schraml, and M. Hofstätter, “UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations,” Proc. SPIE 10629, 106290C (2018).
[Crossref]

J. Isaacs, D. Woodbury, and P. Sprangle, “Remote detection of radioactive material using optically induced air breakdown ionization,” Proc. SPIE 11010, 110101E (2019).

Pure Appl. Geophys. (1)

V. A. Mohnen, “Discussion of the formation of major positive and negative ions up to the 50  km level,” Pure Appl. Geophys. 84, 141–151 (1971).
[Crossref]

Quantum Electron. (1)

V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror,” Quantum Electron. 32, 115–120 (2002).
[Crossref]

Rec. Res. Dev. Appl. Spectrosc. (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Sci. Adv. (1)

R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and H. M. Milchberg, “Remote detection of radioactive material using mid-IR laser-driven electron avalanche,” Sci. Adv. 5, eaav6804 (2019).
[Crossref]

Sens. Actuators A Phys. (1)

F. Ding, G. Song, K. Yin, J. Li, and A. Song, “A GPS-enabled wireless sensor network for monitoring radioactive materials,” Sens. Actuators A Phys. 155, 210–215 (2009).
[Crossref]

Terahertz Sci. Technol. (1)

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X.-C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Terahertz Sci. Technol. 2, 131–143 (2009).

Other (10)

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

S. S. Nabiev and L. A. Palkina, “Current trends in the development of remote methods of detecting radioactive and highly toxic substances,” in The Atmosphere and Ionosphere, V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin, eds. (Springer, 2014), pp. 113–200.

D. Woodbury, J. Wahlstrand, A. Goers, L. Feder, B. Miao, G. Hine, F. Salehi, and H. Milchberg, “Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source,” in 58th Annual Meeting of the American Physical Society Division of Plasma Physics (APS, 2016), presentation CP10.00154.

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).

National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html .

N. M. Kroll and K. M. Watson, “Multiphoton detachment of negative ions,” (1974).

J. D. Huba, “Weakly ionized plasmas,” in NRL Plasma Formulary Supported by The Office of Naval Research (Naval Research Laboratory, 2013), p. 39.

A. W. Ali, “Electron energy loss rates in N2, O2, and air,” NRL Memorandum Report (1984).

M. H. Helle, G. DiComo, J. Palastro, J. Peñano, J. Elle, and A. Schmitt-Sody, “Nonlinear self-channeling of laser pulses through distributed atmospheric turbulence,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu3A.59.

G. P. DiComo, “Nonlinear self-channeling of high-power lasers through turbulent atmospheres,” Doctoral Dissertation (University of Maryland, 2018).

Supplementary Material (1)

NameDescription
» Supplement 1       supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. (a) A chirped, 50 ps (FWHM) λ = 3.6 4.2 μm laser pulse is focused by a 1 m focusing mirror, M2, to a focal spot near a 5 mCi Po-210 source emitting 5.3 MeV α -particles, driving electron avalanche. (b)  O 2 ions formed in the vicinity of the α -source provide seed electrons for the avalanche, with total negative ion concentration versus distance from the α -source shown in the plot. (c) Backscattered mid-IR light is collected by lens L1, located 1 m from the breakdown, into a home-built mid-IR imaging spectrometer, Spec1, with a sample backscatter spectrum and reference laser spectrum shown. Visible plasma emission is collected by lens L2 onto an amplified silicon photodiode PD1. A notch filter rejected stray light from the 1064 nm OPCPA pump laser. (d) Plasma emission from the breakdown is also imaged onto camera CMOS1, with a sample image shown.
Fig. 2.
Fig. 2. Real-time measurements of radiation with data collected at 10 Hz (rate limited by data acquisition speed). (a) Single-shot measurements of plasma emission and mid-IR backscattered spectra from the laser focus 2 cm from the α -source, with a shutter blocking/unblocking the radiation every 50 shots. For each intensity, the visible plasma emission is shown on the top panel, while spectra are shown on the bottom panel. (b) All three diagnostic signals plotted together for pump intensity of 2.25 TW / cm 2 . For each data point, we subtract the median background (non-irradiated) signal and divide by the median irradiated response in order to directly compare the variation of each diagnostic. In order to compare the data scatter for the three channels on unblocked shots, the plot artificially reorders the shot numbers and squeezes 50 shots for each detection channel into adjacent 13 shot-wide intervals.
Fig. 3.
Fig. 3. Single-shot measurements of (a) time advance, (b) plasma emission, and (c) total MIR backscatter for a pump intensity of 2.25 TW / cm 2 as the distance from the α -source, d s f , is scanned over 1–9 cm. 500 shots were taken at each position, with 2 mm increments up to 5 cm, and 1 cm increments thereafter. The minimum d s f of 1 cm is limited by the Po-210 source holder. (d) Mean values at each location, with error bars denoting the standard deviation of data (calculated separately for values above and below the mean). As discussed later in the text, the suppression in plasma emission and total backscatter is caused by scattering losses at high seed densities.
Fig. 4.
Fig. 4. Summary of data from CMOS camera images. (a) Mean number of individual breakdowns observed for a range of intensities as function of source distance, with 500 shots at each position. Figure 1(d) shows a typical image from which breakdowns were counted. The ion density measured with the Gerdien ion counter is overlaid with arbitrary scaling for comparison. (b) Mean value of the widest peak extracted from each shot (over 500 shots) for the same scan of intensity and source distance. Each camera pixel corresponds to 50 μms , such that many smaller breakdowns lead to detection on a single pixel.
Fig. 5.
Fig. 5. Results from numerical simulations. (a) Simulated breakdown time advance (as determined by reaching a threshold electron density of 10 18 cm 3 ) for single electrons exposed to a super-Gaussian temporal pulse for a given local peak intensity. Below the threshold of 1.6 TW / cm 2 , the model predicts no detectable breakdown. Maximum time advance versus intensity is also plotted for current experimental data. (b) Statistical breakdown time advance modeled for two focal volumes for peak intensity 2.25 TW / cm 2 as a function of seed density. Each point shows the mean expected breakdown time and spread, calculated (separately) as the standard deviation for values above and below the mean. For the larger focal spot ( f / 33 ), the volume above the breakdown threshold [Eq. (1)] becomes larger, providing sensitivity to a lower seed density.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V th = π 2 3 w 0 4 λ [ 2 3 ( 5 + I ^ ) I ^ 1 4 tan 1 ( I ^ 1 ) ] ,

Metrics