Abstract

Confining light in open structures is a long-sought goal in nanophotonics and cavity quantum electrodynamics. Embedded eigenstates provide infinite lifetime despite the presence of available leakage channels, but in linear time-invariant systems they cannot be excited from the outside, due to reciprocity. Here, we investigate how atomic nonlinearities may support single-photon embedded eigenstates, which can be populated by a multi-photon excitation followed by internal relaxation. We calculate the system dynamics and show that photon trapping, as well as the reverse release process, can be achieved with arbitrarily high efficiencies. We also discuss the impact of loss, and a path toward the experimental verification of these concepts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlled generation of single photons in a coupled atom-cavity system at a fast repetition-rate

Sungsam Kang, Sooin Lim, Myounggyu Hwang, Wookrae Kim, Jung-Ryul Kim, and Kyungwon An
Opt. Express 19(3) 2440-2447 (2011)

Single-photon transistor based on tunable coupling in a cavity quantum electrodynamics system

Shuang Xu, H. Z. Shen, and X. X. Yi
J. Opt. Soc. Am. B 33(8) 1600-1606 (2016)

Time response of a coupled atoms–cavity system

S. L. Mielke, G. T. Foster, J. Gripp, and L. A. Orozco
Opt. Lett. 22(5) 325-327 (1997)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
    [Crossref]
  2. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
    [Crossref]
  3. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
    [Crossref]
  4. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref]
  5. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
    [Crossref]
  6. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref]
  7. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
    [Crossref]
  8. F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
    [Crossref]
  9. S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
    [Crossref]
  10. S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
    [Crossref]
  11. P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
    [Crossref]
  12. A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
    [Crossref]
  13. E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
    [Crossref]
  14. E. Bulgakov, K. Pichugin, and A. Sadreev, “All-optical light storage in bound states in the continuum and release by demand,” Opt. Express 23, 22520–22531 (2015).
    [Crossref]
  15. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  16. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [Crossref]
  17. D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
    [Crossref]
  18. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  19. P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
    [Crossref]
  20. Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
    [Crossref]
  21. T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
    [Crossref]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  23. S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
    [Crossref]
  24. J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
    [Crossref]
  25. J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
    [Crossref]
  26. E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
    [Crossref]
  27. F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
    [Crossref]
  28. Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
    [Crossref]
  29. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
    [Crossref]
  30. A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
    [Crossref]
  31. J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
    [Crossref]
  32. M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  33. T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  34. Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
    [Crossref]
  35. N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
    [Crossref]
  36. N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
    [Crossref]
  37. G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
    [Crossref]

2019 (1)

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

2018 (1)

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

2017 (3)

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

2016 (4)

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

2015 (4)

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

E. Bulgakov, K. Pichugin, and A. Sadreev, “All-optical light storage in bound states in the continuum and release by demand,” Opt. Express 23, 22520–22531 (2015).
[Crossref]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

2014 (6)

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

2013 (5)

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

2012 (1)

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

2011 (2)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

2010 (2)

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

2009 (2)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

2008 (1)

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

2007 (2)

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

1985 (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Alber, G.

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

Allman, M. S.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Alu, A.

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Alù, W.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Andersson, E.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Arcari, M.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Aumentado, J.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Baranger, H. U.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Barends, R.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Blais, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Boitier, F.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Bulgakov, E.

Bulgakov, E. N.

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Calajó, G.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Chen, Y.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Choudhury, D.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Cicak, K.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Ciccarello, F.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Cirac, J. I.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Cleland, A. N.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Corrielli, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Crespi, A.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Da Silva, F.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

de Leon, N. P.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Delaye, P.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Della Valle, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

den Hollander, F.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Doeleman, A.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Dubreuil, N.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Fabre, C.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Facchi, P.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Fan, S.

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Fang, Y.-L. L.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Fedorov, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Firstenberg, O.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Fong, P.

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Friedrich, H.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Godard, A.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Goldman, N.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

González-Tudela, A.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Hansen, S. L.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Hberg, P.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Javadi, A.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Johansson, J.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Kalb, N.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Keil, R.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Kelly, J.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Kim, M.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Kivshar, Y. S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Kocabas, S. E.

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

Koenderink, A. F.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Korotkov, A. N.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Lalumire, K.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Lannebère, S.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Law, C.

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Lecocq, F.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Lee, E. H.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Liu, J.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Liu, L.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lodahl, P.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Longhi, S.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Lucero, E.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Lukin, M. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Mariantoni, M.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Martinis, J. M.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Megrant, A.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Miroshnichenko, A. E.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Monticone, F.

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Monticone, H. M.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Mukherjee, S.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Nation, P.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Neill, C.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Nolte, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Nori, F.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

O’Malley, P.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Osellame, R.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Pascazio, S.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Pepe, F. V.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Pichugin, K.

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Pomarico, D.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Reiserer, A.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rempe, G.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rephaeli, E.

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

Ritter, S.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rosencher, E.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Roy, D.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Sadreev, A.

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Sanders, B. C.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sank, D.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Shen, J. T.

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

Shen, J.-T.

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

Shi, T.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Silveirinha, M. G.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Simmonds, R. W.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Sirois, A.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Sllner, I.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Song, J. D.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Spracklen, A.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Stobbe, S.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sukhorukov, A. A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Szameit, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Teufel, J.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Thompson, J. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Thomson, R. R.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Tiecke, T.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Trautmann, N.

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

Tufarelli, T.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Tünnermann, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Vainsencher, A.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Van Loo, A. F.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Vukovi, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Vuleti, V.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Wallraff, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Weimann, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Wenner, J.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

White, T.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Whittaker, J. D.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Wilson, C. M.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Wintgen, D.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Wu, Y.-H.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Xu, Y.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Yin, Y.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Zheng, H.

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Comput. Phys. Commun. (1)

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

EPJ Quantum Technol. (1)

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Nat. Commun. (2)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Nat. Photonics (2)

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Nat. Rev. Mat. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

Nature (2)

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (9)

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

Phys. Rev. B (2)

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Phys. Rev. Lett. (10)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Phys. Rev. X (1)

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Science (1)

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Embedded eigenstates due to destructive interference in classical and quantum systems. (a) Two optical cavities are mutually coupled and interact with a single-mode waveguide. An EE is supported when Eq. (1) holds. (b) Time evolution of the cavity intensities (red and green lines), upon a Gaussian pulse excitation (blue shaded area). Parameters: ω 2 = 0.96 ω 1 , V 1 = 0.1 v g ω 1 , V 2 = 0.5 V 1 . (c) Same as in (a), but with cavity 1 replaced by a two-level system. (d) Time evolution of the average cavity population (red line), atom occupation probability (green line), and EE occupation probability (black dashed line) upon a coherent pulsed excitation containing average photon numbers N = 1 , 2 and 4. System and pulse parameters are the same as (b), with 1 A and 1 C .
Fig. 2.
Fig. 2. (a) Trapping process: a two-photon Gaussian state impinges on the system, partially exciting the EE. The curves show the occupation probability of the different 1- and 2-excitation states of the atom-cavity system (see text for details). (b) Release process: a single-photon Gaussian state impinges on the excited EE. System parameters in (a), (b) are as in Fig. 1(d), and σ = 1 / Γ , k = ω B ( 1 ) . (c), (d) Excitation probability of the EE for t + versus (c)  V C / V A and σ (for k = ω B ( 1 ) ) and (d)  k and σ (for V C / V A = 0.5 ). All other parameters are as in (a), (b). The black horizontal stripe in (c) corresponds to the values of V C / V A that result in J > 0.1 ( ω A + ω C ) / 2 . Horizontal lines in (d) indicate the frequencies of single- and two-excitation states.
Fig. 3.
Fig. 3. (a) Two-photon final state obtained when the EE is released by a single-photon Gaussian packet (see text for details). (b) Evolution of the cavity–atom system when the state in (a) is used as the initial two-photon state. The curves show the occupation probability of the different 1- and 2-excitation states of the atom–cavity system. Note that P A C ( t ) and P 2 C ( t ) have been rescaled by a factor 3.
Fig. 4.
Fig. 4. (a) Cavity population upon two-photon Gaussian excitation for the atom–cavity system set in the EE condition (solid lines) and for a single cavity (dashed lines). In both cases, the cavity has an additional decay rate Γ C . The system and excitation parameters are as in Fig. 2(a). (b) A different implementation based on two coupled cavities and atom that support two single-photon EEs. (c) Dynamics of the system shown in (b), set in the EE condition (6), for a coherent pulsed excitation with average photon number N = 2. Red and green lines show the average number of photons in each cavity, while the blue and black lines show the occupation probability of the atom and the two EEs. Parameters are as in Fig. 1(b), and J = 0.003 ω 1 , ω A = ω 1 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( ω 1 ω 2 ) V 1 V 2 = J ( V 1 2 V 2 2 )
H ^ = H ^ A C + + d k ω k c ^ k c ^ k + + d k [ c ^ k ( V c a ^ + V A σ ^ ) + h.c. ] ,
ρ ˙ = i [ H ^ A C + H ^ i n , ρ ] + L ρ L { L L , ρ } ,
H ^ i n = 2 π v g [ ( V A σ ^ + V C a ^ ) ( C R , I N ( t ) + C L , I N ( t ) ) + h.c. ]
H ^ = H ^ A C + H ^ WG + 2 π d x δ ( x ) { [ c ^ R ( x ) + c ^ L ( x ) ] ( V c a ^ + V A σ ^ ) + h.c. } ,
( ω 1 ω 2 ) V 1 V 2 = J ( V 1 2 V 2 2 ) + V 1 2 V 2 g 2 V 2 J + V 1 ( ω A ω 2 ) .

Metrics