Abstract

A CMOS-compatible avalanche photodiode (APD) with high speed and high sensitivity is a critical component of a low-cost, high-data-rate, and energy-efficient optical communication link. A novel waveguide-coupled silicon–germanium APD detector with three electric terminals was demonstrated with breakdown voltage of 6V, bandwidth of 18.9 GHz, DC photocurrent gain of 15, open-eye diagram at a data rate of 35 Gb/s, and sensitivity of 11.4dBm at a data rate of 25 Gb/s. This three-terminal APD allows high-yield fabrication in the standard CMOS process and provides robust high-sensitivity operation under small voltage supply.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
25  Gbps low-voltage waveguide Si–Ge avalanche photodiode

Zhihong Huang, Cheng Li, Di Liang, Kunzhi Yu, Charles Santori, Marco Fiorentino, Wayne Sorin, Samuel Palermo, and Raymond G. Beausoleil
Optica 3(8) 793-798 (2016)

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Nicholas J. D. Martinez, Christopher T. Derose, Reinhard W. Brock, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 24(17) 19072-19081 (2016)

Resonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes

Daoxin Dai, Hui-Wen Chen, John E. Bowers, Yimin Kang, Mike Morse, and Mario J. Paniccia
Opt. Express 17(19) 16549-16557 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  2. L. Alloatti and R. J. Ram, “Resonance-enhanced waveguide-coupled silicon-germanium detector,” Appl. Phys. Lett. 108, 071105 (2016).
    [Crossref]
  3. Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
    [Crossref]
  4. Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.
  5. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
    [Crossref]
  6. M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.
  7. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
    [Crossref]
  8. L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
    [Crossref]
  9. H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “High sensitivity 10 Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector,” Opt. Express 23, 815–822 (2015).
    [Crossref]
  10. N. J. D. Martinez, C. T. Derose, R. W. Brock, A. L. Starbuck, A. T. Pomerene, A. L. Lentine, D. C. Trotter, and P. S. Davids, “High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes,” Opt. Express 24, 19072–19081 (2016).
    [Crossref]
  11. Y.-C. N. Na and Y. Kang, “Monolithic three terminal photodetector,” U.S. patent8461624 (13May2013).
  12. Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).
  13. X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.
  14. B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.
  15. Lumerical Device, https://www.lumerical.com .
  16. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).
  17. Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.
  18. B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.
  19. D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.
  20. B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).
  21. D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
    [Crossref]
  22. J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
    [Crossref]
  23. M. M. P. Fard, G. Cowan, and O. L. Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Express 24, 27738–27752 (2016).
    [Crossref]
  24. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
    [Crossref]
  25. R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication, H. Kressel, ed. (Springer-Verlag, 1982), chap. 4, pp. 89–160.

2016 (4)

2015 (2)

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “High sensitivity 10 Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector,” Opt. Express 23, 815–822 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

2014 (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

2010 (2)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

2009 (3)

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Absil, P.

Adam, T. N.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Alloatti, L.

L. Alloatti and R. J. Ram, “Resonance-enhanced waveguide-coupled silicon-germanium detector,” Appl. Phys. Lett. 108, 071105 (2016).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Bauwelinck, J.

Beausoleil, R.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

Beausoleil, R. G.

Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
[Crossref]

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Boeuf, F.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Bowers, J. E.

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Brock, B.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Brock, R. W.

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Carter, J. B.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Cassan, E.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Chen, H. T.

Chen, H. W.

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Chen, Y.-H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Cheng, L.

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Coolbaugh, D. D.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Cowan, G.

Crozat, P.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Dai, D.

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Damlencourt, J.-F.

Davids, P. S.

De Coster, J.

De Heyn, P.

Derose, C. T.

Fard, M. M. P.

Fédéli, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Fiorentino, M.

Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
[Crossref]

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Floyd, M.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Hartmann, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Hong, F. C.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Hosseini, E. S.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Huang, Z.

Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
[Crossref]

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Kang, Y.

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Y.-C. N. Na and Y. Kang, “Monolithic three terminal photodetector,” U.S. patent8461624 (13May2013).

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Kuo, F. M.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Ladouceur, O. L.

Laval, S.

Leake, G.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Lecunff, Y.

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lentine, A. L.

Lepage, G.

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Liang, D.

Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
[Crossref]

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Marris-Morini, D.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Martinez, N. J. D.

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Moresco, M.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Morse, M.

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Na, Y.-C. N.

Y.-C. N. Na and Y. Kang, “Monolithic three terminal photodetector,” U.S. patent8461624 (13May2013).

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Osmond, J.

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Palermo, S.

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Peng, Z.

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Personick, S. D.

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication, H. Kressel, ed. (Springer-Verlag, 1982), chap. 4, pp. 89–160.

Pomerene, A. T.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Rajamani, K.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Ram, R. J.

L. Alloatti and R. J. Ram, “Resonance-enhanced waveguide-coupled silicon-germanium detector,” Appl. Phys. Lett. 108, 071105 (2016).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Rawson, F.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Rodwell, M. J. W.

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Roelkens, G.

Rubio, J. C.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Santori, C.

Z. Huang, L. Cheng, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–797 (2016).
[Crossref]

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shi, J. W.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Smith, R. G.

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication, H. Kressel, ed. (Springer-Verlag, 1982), chap. 4, pp. 89–160.

Sorin, W.

Sorin, W. V.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

Starbuck, A. L.

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Su, Z.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sun, J.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

Timurdogan, E.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Trotter, D. C.

Van Campenhout, J.

Verbist, J.

Verheyen, P.

Virot, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Vivien, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009).
[Crossref]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wang, B.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

Ware, M.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Watts, M. R.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Wu, R.

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

Wu, Y. S.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Yin, X.

Yu, K.

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Zeng, X.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Appl. Phys. Lett. (1)

L. Alloatti and R. J. Ram, “Resonance-enhanced waveguide-coupled silicon-germanium detector,” Appl. Phys. Lett. 108, 071105 (2016).
[Crossref]

IEEE Electron Device Lett. (1)

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Nat. Commun. (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Nature (2)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Opt. Express (4)

Optica (1)

Other (13)

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication, H. Kressel, ed. (Springer-Verlag, 1982), chap. 4, pp. 89–160.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM POWER7 approach,” in International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, 2010), pp. 1–11.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Resonant germanium-on-silicon photodetector with evanescent waveguide coupling,” in Conference on Lasers and Electro-Optics (CLEO) (2016), pp. 5–6.

Y.-C. N. Na and Y. Kang, “Monolithic three terminal photodetector,” U.S. patent8461624 (13May2013).

Z. Huang, M. Fiorentino, C. Santori, Z. Peng, D. Liang, and R. G. Beausoleil, “Devices including independently controllable absorption region and multiplication region electric fields,” U.S. patent9, 490, 385 B2 (8November2016).

X. Zeng, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Low-voltage three-terminal avalanche photodiodes,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF2I.3.

B. Wang, Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “35  Gb/s ultralow-voltage three-terminal Si-Ge avalanche photodiode,” in OFC Optical Fiber Communication Conference and Exposition (2019), paper Th3B.2.

Lumerical Device, https://www.lumerical.com .

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

Z. Huang, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Operation and analysis of low-voltage three-terminal avalanche photodiodes,” in 14th International Conference on Group IV Photonics (IEEE, 2017), pp. 179–180.

B. Wang, Z. Huang, X. Zeng, R. Wu, W. V. Sorin, D. Liang, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes,” in IEEE 15th International Conference on Group IV Photonics (IEEE, 2018), pp. 109–110.

D. Dai, H. W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in IEEE International Conference on Group IV PhotonicsGFP (2009), pp. 13–15.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. Beausoleil, “A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Structural diagram of a three-terminal silicon–germanium waveguide avalanche photodiode. (b) Simplified schematic of a three-terminal silicon–germanium APD with three electric terminals providing two independent voltage drops across two separate regions for light absorption and charge amplification. (c) Simulated electric field at the central vertical cross section of the three-terminal APD, with 6 V reverse bias voltages across both the light absorption and charge multiplication regions.
Fig. 2.
Fig. 2. (a) Electric model of the three-terminal silicon–germanium APD, where each pair of the three electric terminals is connected by a parallel capacitor and resistor, and an inductor exists between the interdigitated P-doped and N-doped silicon regions. (b) Measured S 11 parameters of a three-terminal APD under various reverse bias voltages shown in a Smith chart. (c) Simplified circuit model of a three-terminal SACM APD. The parasitics are also included. (d) Measured and fitted electrical output impedances at 6 V reverse bias. For the results in (b)–(d), the two terminals contacting germanium and P-doped silicon regions are shorted by wire bonding.
Fig. 3.
Fig. 3. Experiment setup for characterization of integrated three-terminal silicon–germanium avalanche photodiodes. Some acronyms are as follows: CW, continuous wave; MZ, Mach–Zehnder; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; DUT, device under test; VNA, vector network analyser; BERT, bit error rate tester; Scope, sampling scope.
Fig. 4.
Fig. 4. Optical characterization of a three-terminal silicon–germanium waveguide APD: (a) photocurrent and avalanche gain versus reverse bias voltage, showing a breakdown voltage of about 6 V; (b) breakdown voltages of three-terminal silicon–germanium APDs increase with the gap between P-doped and N-doped silicon regions; (c) photocurrent with incidence of a femtosecond optical pulse under various reverse bias voltages; (d) 3 dB bandwidth calculated from Fourier transform of its impulse response in (c).
Fig. 5.
Fig. 5. Electric characterization of a three-terminal silicon–germanium waveguide APD: electrical eye diagrams at data rates of (a) 25 Gb/s, (b) 30 Gb/s and (c) 35 Gb/s with 6 V reverse bias voltage, and (d) bit error rate versus data rate and optical modulation amplitude (OMA) at the input waveguide.

Tables (1)

Tables Icon

Table 1. Fitted Electric Circuit Parameters of a Three-Terminal Avalanche Photodiode under a Reverse Bias of 6 V

Metrics