Abstract

Light scattering has become a common biomedical research tool, enabling diagnostic sensitivity to myriad tissue alterations associated with disease. Light–tissue interactions are particularly attractive for diagnostics due to the variety of contrast mechanisms that can be used, including spectral, angle-resolved, and Fourier-domain detection. Photonic diagnostic tools offer further benefits in that they are non-ionizing, non-invasive, and give real-time feedback. In this review, we summarize recent innovations in light-scattering technologies, with a focus on clinical achievements over the previous ten years.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative diagnosis of tissue microstructure with wide-field high spatial frequency domain imaging

Weihao Lin, Bixin Zeng, Zili Cao, Xinlin Chen, Kaiyan Yang, and Min Xu
Biomed. Opt. Express 9(7) 2905-2916 (2018)

Microscopic origin of light scattering in tissue

Alois K. Popp, Megan T. Valentine, Peter D. Kaplan, and David A. Weitz
Appl. Opt. 42(16) 2871-2880 (2003)

Confocal light scattering spectroscopic imaging system for in situ tissue characterization

Peter Huang, Martin Hunter, and Irene Georgakoudi
Appl. Opt. 48(13) 2595-2599 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw Hill Professional, 2009).
  2. H. C. van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).
  4. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
  5. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
    [Crossref]
  6. A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
  7. J. F. De Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref]
  8. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
    [Crossref]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  10. M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
    [Crossref]
  11. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
    [Crossref]
  12. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
    [Crossref]
  13. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
    [Crossref]
  14. L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
    [Crossref]
  15. O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
    [Crossref]
  16. R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
    [Crossref]
  17. H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
    [Crossref]
  18. E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
    [Crossref]
  19. T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
    [Crossref]
  20. I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
    [Crossref]
  21. A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
    [Crossref]
  22. M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
    [Crossref]
  23. J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
    [Crossref]
  24. A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
    [Crossref]
  25. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
    [Crossref]
  26. M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
    [Crossref]
  27. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
    [Crossref]
  28. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
    [Crossref]
  29. L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
    [Crossref]
  30. L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
    [Crossref]
  31. M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
    [Crossref]
  32. L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
    [Crossref]
  33. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [Crossref]
  34. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
    [Crossref]
  35. G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2, 3284–3294 (2011).
    [Crossref]
  36. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48, 3490–3496 (2009).
    [Crossref]
  37. K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
    [Crossref]
  38. U. Morgner, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [Crossref]
  39. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
    [Crossref]
  40. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
    [Crossref]
  41. J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37, 4443–4445 (2012).
    [Crossref]
  42. J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
    [Crossref]
  43. Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 3339–3345 (2015).
    [Crossref]
  44. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
    [Crossref]
  45. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
    [Crossref]
  46. A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
    [Crossref]
  47. C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9, 3581–3589 (2018).
    [Crossref]
  48. W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9, 3464–3480 (2018).
    [Crossref]
  49. M. Kassinopoulos, E. Bousi, I. Zouvani, and C. Pitris, “Correlation of the derivative as a robust estimator of scatterer size in optical coherence tomography (OCT),” Biomed. Opt. Express 8, 1598–1606 (2017).
    [Crossref]
  50. V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett. 36, 1911–1913 (2011).
    [Crossref]
  51. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
    [Crossref]
  52. V. Krishnaswamy, A. M. Laughney, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Scanning in situ spectroscopy platform for imaging surgical breast tissue specimens,” Opt. Express 21, 2185–2194 (2013).
    [Crossref]
  53. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
    [Crossref]
  54. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
    [Crossref]
  55. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
    [Crossref]
  56. V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
    [Crossref]
  57. J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
    [Crossref]
  58. D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
    [Crossref]
  59. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [Crossref]
  60. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
    [Crossref]
  61. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
    [Crossref]
  62. J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
    [Crossref]
  63. R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
    [Crossref]
  64. X. Lin, N. Wan, L. Weng, and Y. Zhou, “Angular-dependent light scattering from cancer cells in different phases of the cell cycle,” Appl. Opt. 56, 8154–8158 (2017).
    [Crossref]
  65. H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
    [Crossref]
  66. D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6, 2755–2765 (2015).
    [Crossref]
  67. Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
    [Crossref]
  68. Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
    [Crossref]
  69. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
    [Crossref]
  70. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
    [Crossref]
  71. S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
    [Crossref]
  72. T. Nagaoka and S. Watanabe, “A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 327–330.
  73. T. Nagaoka and S. Watanabe, “Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 5691–5694.
  74. X. Lin, N. Wan, L. Weng, and Y. Zhou, “Light scattering from normal and cervical cancer cells,” Appl. Opt. 56, 3608–3614 (2017).
    [Crossref]
  75. W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
    [Crossref]
  76. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
    [Crossref]
  77. D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
    [Crossref]
  78. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
    [Crossref]
  79. A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
    [Crossref]
  80. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
    [Crossref]
  81. J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473–3484 (2003).
    [Crossref]
  82. A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
    [Crossref]
  83. N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
    [Crossref]
  84. N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
    [Crossref]
  85. N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
    [Crossref]
  86. D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
    [Crossref]
  87. Z. A. Steelman, D. Ho, K. K. Chu, and A. Wax, “Scanning system for angle-resolved low-coherence interferometry,” Opt. Lett. 42, 4581–4584 (2017).
    [Crossref]
  88. S. Kim, S. Heflin, L. A. Kresty, M. Halling, L. N. Perez, D. Ho, M. Crose, W. Brown, S. Farsiu, V. Arshavsky, and A. Wax, “Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography,” Biomed. Opt. Express 7, 1400–1414 (2016).
    [Crossref]
  89. C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48, D20–D25 (2009).
    [Crossref]
  90. M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18, 14616–14626 (2010).
    [Crossref]
  91. H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012).
    [Crossref]
  92. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
    [Crossref]
  93. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref]
  94. Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
    [Crossref]
  95. Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23, 15792–15805 (2015).
    [Crossref]
  96. M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
    [Crossref]
  97. J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
    [Crossref]
  98. R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
    [Crossref]
  99. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
    [Crossref]
  100. M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
    [Crossref]
  101. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
    [Crossref]
  102. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
    [Crossref]
  103. A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
    [Crossref]
  104. A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
    [Crossref]
  105. J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8, 3045–3052 (2017).
    [Crossref]
  106. D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
    [Crossref]
  107. D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
    [Crossref]
  108. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
    [Crossref]
  109. R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
    [Crossref]
  110. R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
    [Crossref]
  111. S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
    [Crossref]
  112. L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).
  113. M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
    [Crossref]
  114. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
    [Crossref]
  115. R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophys. J. 15, 191–203 (1975).
    [Crossref]
  116. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref]
  117. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  118. W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
    [Crossref]
  119. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  120. M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
    [Crossref]
  121. T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
    [Crossref]
  122. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
    [Crossref]
  123. E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
    [Crossref]
  124. T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
    [Crossref]
  125. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19, 10913–10922 (2011).
    [Crossref]
  126. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
    [Crossref]
  127. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
    [Crossref]

2018 (5)

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
[Crossref]

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9, 3464–3480 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9, 3581–3589 (2018).
[Crossref]

2017 (12)

M. Kassinopoulos, E. Bousi, I. Zouvani, and C. Pitris, “Correlation of the derivative as a robust estimator of scatterer size in optical coherence tomography (OCT),” Biomed. Opt. Express 8, 1598–1606 (2017).
[Crossref]

X. Lin, N. Wan, L. Weng, and Y. Zhou, “Light scattering from normal and cervical cancer cells,” Appl. Opt. 56, 3608–3614 (2017).
[Crossref]

J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8, 3045–3052 (2017).
[Crossref]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref]

X. Lin, N. Wan, L. Weng, and Y. Zhou, “Angular-dependent light scattering from cancer cells in different phases of the cell cycle,” Appl. Opt. 56, 8154–8158 (2017).
[Crossref]

Z. A. Steelman, D. Ho, K. K. Chu, and A. Wax, “Scanning system for angle-resolved low-coherence interferometry,” Opt. Lett. 42, 4581–4584 (2017).
[Crossref]

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

2016 (5)

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

S. Kim, S. Heflin, L. A. Kresty, M. Halling, L. N. Perez, D. Ho, M. Crose, W. Brown, S. Farsiu, V. Arshavsky, and A. Wax, “Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography,” Biomed. Opt. Express 7, 1400–1414 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
[Crossref]

2015 (7)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
[Crossref]

M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
[Crossref]

Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23, 15792–15805 (2015).
[Crossref]

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6, 2755–2765 (2015).
[Crossref]

Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 3339–3345 (2015).
[Crossref]

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

2014 (11)

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
[Crossref]

2013 (5)

V. Krishnaswamy, A. M. Laughney, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Scanning in situ spectroscopy platform for imaging surgical breast tissue specimens,” Opt. Express 21, 2185–2194 (2013).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
[Crossref]

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

2012 (7)

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012).
[Crossref]

J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37, 4443–4445 (2012).
[Crossref]

2011 (11)

V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett. 36, 1911–1913 (2011).
[Crossref]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19, 10913–10922 (2011).
[Crossref]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2, 3284–3294 (2011).
[Crossref]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

2010 (6)

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18, 14616–14626 (2010).
[Crossref]

2009 (10)

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48, D20–D25 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[Crossref]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
[Crossref]

G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48, 3490–3496 (2009).
[Crossref]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

2008 (3)

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

2007 (3)

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

2006 (4)

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

2005 (3)

2004 (2)

S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

2003 (5)

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473–3484 (2003).
[Crossref]

2002 (4)

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

2001 (3)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

2000 (4)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

U. Morgner, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

1999 (2)

1998 (2)

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

1997 (2)

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[Crossref]

J. F. De Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[Crossref]

1995 (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1975 (1)

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophys. J. 15, 191–203 (1975).
[Crossref]

1974 (1)

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).

A’amar, O.

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Aamar, O. M.

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

Akbari, Y.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Alcocer, J.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Almassalha, L. M.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Amoozegar, C.

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

Arifler, D.

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

Arshavsky, V.

Ashitate, Y.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Augustin, M.

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

Azarin, S. M.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Backman, V.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
[Crossref]

J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37, 4443–4445 (2012).
[Crossref]

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw Hill Professional, 2009).

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Bajaj, S.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Bakker Schut, T. C.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Ballmann, C. W.

Barth, R. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Bauer, G. M.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Baumann, B.

Bazrafkan, A. K.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Benaglia, T.

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

Bennett, A.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Bentley, R. C.

Berzin, T. M.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Bianchi, L.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Bianchi, L. K.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Bigio, I.

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Bigio, I. J.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[Crossref]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Blasiole, K. N.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Bloom, S. L.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

Boone, C. W.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Boppart, S. A.

Bosschaart, N.

Boulos, F. I.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Bousi, E.

Boustany, N. N.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
[Crossref]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
[Crossref]

Bown, S. G.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Brand, R. E.

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Bright, S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Bright, S. D.

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Brown, W.

Brown, W. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Brunsting, A.

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophys. J. 15, 191–203 (1975).
[Crossref]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[Crossref]

Burmeister, D. M.

Calabro, K. W.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

Capoglu, I. R.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

Carraro, A.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

Carretta, E.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Carretta, E. E.

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Caspers, P. J.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Cates, E.

Ceolato, R.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Cerda, S. R.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

Chalut, K. J.

Chan, C. J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Chandel, N. S.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Chandler, J. E.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Chang, C. C.

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Cherkezyan, L.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Choi, B.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
[Crossref]

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Chong, S. P.

Cho-Vega, J. H.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Christy, R. J.

Chu, K. K.

Chuttani, R.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Clark, B. R.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

Colomb, T.

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Crawford, J. M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Crespo, S.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Crose, M.

Crouzet, C.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Cruz, M. D.

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Cuccia, D. J.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Cuche, E.

Cui, H.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

Damania, D.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

Darragh, T. M.

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

Dasari, R. R.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Davies, S.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

De Boer, J. F.

De las Morenas, A.

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

Dellon, E. S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Depeursinge, C.

Desai, M.

Dhar, A.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

Dimou, A.

Ding, H.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

Doddi, V.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

Donga, D.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Drake, T. K.

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6, 2755–2765 (2015).
[Crossref]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
[Crossref]

Ducommun, B.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Dunn, A.

Durkin, A. J.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Durr, N. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Duvic, M.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Eick, A. A.

Eldridge, W. J.

Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
[Crossref]

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

Elliott, J. T.

Emery, Y.

Eugui, P.

Evers, D. J.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]

Farsiu, S.

Fearn, T.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Feld, M. S.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Fitzgerald, R.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Fitzgerald, R. C.

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

Fitzmaurice, M.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Follen, M.

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

Frangioni, J. V.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Freyer, J. P.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

Fulton, J.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Galanko, J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Garcia-Uribe, A.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Gebhart, S. C.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Gesperger, J.

Giacomelli, M.

Giacomelli, M. G.

Gillenwater, A.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

Gillette, M. U.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Gioux, S.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Gladstein, S.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Goldberg, M. J.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Goldberg, S.

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Goldblum, J. R.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Goldsmith, J. D.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Gomes, A.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Gomes, A. J.

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Gopal, V.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Graf, R.

Graf, R. N.

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[Crossref]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

Gramlich, T. L.

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

Green, K. N.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Guck, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

Guillaud, M.

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

Guo, L.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Gurjar, R.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Guy, C.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

Hager, F.

Halling, M.

Hamano, T.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Hanlon, E.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Hanlon, E. B.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Hardee, D.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Harper, D. J.

Hayes, D. P.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heflin, S.

Heifetz, A.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Hendriks, B. H.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Heule, F.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Hielscher, A. H.

Hitzenberger, C. K.

Ho, D.

Hopper, C.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Horcher, E.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Hosseini-Farahabadi, M.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Hsu, W. C.

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huang, Q.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

Huihui, J.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Hwang, L. Y.

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

Ikeda, T.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).

Itani, S.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Itzkan, I.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Jamasian, B.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Jameel, M.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Jeong, Y.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Jerjes, W.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Jo, Y.

Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23, 15792–15805 (2015).
[Crossref]

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Johnson, K.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Johnson, K. S.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

Jorand, R.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Joshi, S.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

Jung, J.

Jung, J. H.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Kalashnikov, M.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Kang, S. J.

Kanick, S. C.

Kassinopoulos, M.

Keener, J. D.

Keller, M. D.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Kelley, M. C.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Kelly, E.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Keymel, K. L.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Khan, U.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Kim, J.

Kim, J. G.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Kim, J. S.

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

Kim, K.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Kim, M. H.

Kim, M. W.

Kim, S.

Kim, T.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Kim, Y.

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Kim, Y. L.

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Klomp, H. M.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Koike, M. A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Konecky, S. D.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

Koo, T. W.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Krakiwsky, S. E.

S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
[Crossref]

Kramer, J. R.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Kresty, L. A.

Krishnaswamy, V.

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Kromine, A.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Kromine, A. K.

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Kunte, D.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

LaFerla, F. M.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Laughney, A. M.

V. Krishnaswamy, A. M. Laughney, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Scanning in situ spectroscopy platform for imaging surgical breast tissue specimens,” Opt. Express 21, 2185–2194 (2013).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett. 36, 1911–1913 (2011).
[Crossref]

Leahy, C.

Lee, B. T.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Lee, E.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Lee, J.

Lee, J. W.

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Lee, M.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Lee, S.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Levinson, H.

Leyden, J.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Li, X.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Li, Y.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

Lichtenegger, A.

Lima, C.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Lin, A. J.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lin, S. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Lin, X.

Liou, L.

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

Liu, S. C.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Liu, W.

Liu, Y.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Loomis, B.

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

Lorenzo, C.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Lovat, L. B.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

Lucassen, G. W.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Lyratzopoulos, G.

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

Macaulay, C.

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

Mackenzie, G. D.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Madanick, R. D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Magistretti, P. J.

Mahadevan-Jansen, A.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Maher, J. R.

Mahil, J.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Majumder, A.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Majumder, S. K.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

Manoharan, R.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Mantis, G.

Mantyh, C. R.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

Marquet, P.

Mazhar, A.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

McClatchy, D. M.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

Meng, Z.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Merkle, C. W.

Meszoely, I. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Meyer, R. A.

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophys. J. 15, 191–203 (1975).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).

Migaly, J.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

Milner, T. E.

Mir, M.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Modell, M. D.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Moffitt, L. A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Morgan, J. M.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Morgner, U.

Mostow, E. N.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Motz, J. T.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Mourant, J. R.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[Crossref]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
[Crossref]

Muakkassa, F. K.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Muck, M.

Mueller, M.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Muffoletto, D. P.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Mullaney, P. F.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[Crossref]

Müller, M. G.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Müller, P.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Mutyal, N. N.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Nachabe, R.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Nagaoka, T.

T. Nagaoka and S. Watanabe, “Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 5691–5694.

T. Nagaoka and S. Watanabe, “A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 327–330.

Nam, K. T.

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Nelson, J. S.

Ness, S.

Neumann, M. H.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Nguyen, F.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

Nines, R.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

Novelli, M. R.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

Nusrat, A.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

O’Brien, M. J.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

O’Donovan, M.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Oketokoun, R.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Okoniewski, M. M.

S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
[Crossref]

Olivares, G. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

Overholt, B. F.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Ozden, N.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Panjehpour, M.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Paquette, A. D.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Park, H.

Park, H. S.

Park, J.-H.

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Park, Y.

Park, Y. K.

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Pasternack, R. M.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
[Crossref]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
[Crossref]

Pasupneti, T.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Patel, M.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]

Paulsen, K. D.

Pavlova, I.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

Perelman, L.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Perelman, L. T.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

Perez, L. N.

Petersen, W.

Petras, R. E.

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Pickard, D.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Pitris, C.

Pleskow, D. K.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Pogue, B. W.

Ponticorvo, A.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
[Crossref]

Poon, C.

Popescu, G.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

Pradhan, P.

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Prieto, V. G.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Puppels, G. J.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Pyhtila, J.

Pyhtila, J. W.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

Qiu, L.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Radhakrishnan, H.

Radhi, H.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Radosevich, A. J.

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Raimondo, M.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Rao, A.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Rappaz, B.

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
[Crossref]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

Rice, T. B.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Richards-Kortum, R.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
[Crossref]

Richter, J. E.

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Rinehart, M. T.

M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
[Crossref]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Riviere, N.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Rizzo, E. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Robles, F.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

Roblyer, D. M.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

Rodriguez-Diaz, E.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Rogers, J. D.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Rohrbach, D. J.

J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8, 3045–3052 (2017).
[Crossref]

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Rosen, J. E.

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Roy, H.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Roy, H. K.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Ruderman, S.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Ruderman, S. K.

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Ruers, T. J.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Ruhoff, P. T.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Saager, R. B.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Sacks, A.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

Sawhney, M.

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Sawhney, M. S.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

Scarcelli, G.

Scholze, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Schürmann, M.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Schut, T. C. B.

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Scully, M. O.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Seiler, M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Selim, M. A.

Selvasekar, C.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Shafer, K. E.

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Shaheen, N. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Sharples, L. D.

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

Shen, D.

Shields, S.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

Shin, D.

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

Shinagare, S.

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Siegel, M. P.

Sigel, J. E.

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Singh, S. K.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

Singh-Moon, R. P.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

Skacel, M.

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Smith-McCune, K. K.

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

Song, W.

Spliethoff, J. W.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Srinivasan, V. J.

Steele, V. E.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

Steelman, Z. A.

Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
[Crossref]

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

Z. A. Steelman, D. Ho, K. K. Chu, and A. Wax, “Scanning system for angle-resolved low-coherence interferometry,” Opt. Lett. 42, 4581–4584 (2017).
[Crossref]

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Steenbergen, W.

Stice, S.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Stockdale, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Stoner, G. D.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

Stoyneva, V.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Stypula, Y.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

Stypula-Cyrus, Y.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

Su, J. W.

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

Subramanian, H.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Suh, H.

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Sunar, U.

J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8, 3045–3052 (2017).
[Crossref]

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Sung, K. B.

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

Sung, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Szleifer, I.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

Taflove, A.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

Terry, N.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

Terry, N. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Thacker, J. K.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Thorpe, S. M.

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

Tiwari, A. K.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

Tobias, A. M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Torabzadeh, M.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Travers, J. B.

Traverso, A. J.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Trembath, D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Tromberg, B. J.

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Troyanova-Wood, M. A.

Turner, L. E.

S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
[Crossref]

Turzhitsky, V.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Upile, T.

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Valea, F. A.

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

van Gemert, M. J.

van Sandick, J. W.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Veenstra, C.

Vellekoop, I. M.

Vitkin, E.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Wali, R. K.

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Wallace, M.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Wan, N.

Wang, F.

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Wang, L. V.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Wang, R.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Wang, Z.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

Watanabe, S.

T. Nagaoka and S. Watanabe, “Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 5691–5694.

T. Nagaoka and S. Watanabe, “A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 327–330.

Wax, A.

Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
[Crossref]

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

Z. A. Steelman, D. Ho, K. K. Chu, and A. Wax, “Scanning system for angle-resolved low-coherence interferometry,” Opt. Lett. 42, 4581–4584 (2017).
[Crossref]

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

S. Kim, S. Heflin, L. A. Kresty, M. Halling, L. N. Perez, D. Ho, M. Crose, W. Brown, S. Farsiu, V. Arshavsky, and A. Wax, “Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography,” Biomed. Opt. Express 7, 1400–1414 (2016).
[Crossref]

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6, 2755–2765 (2015).
[Crossref]

M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
[Crossref]

Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 3339–3345 (2015).
[Crossref]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18, 14616–14626 (2010).
[Crossref]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[Crossref]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48, D20–D25 (2009).
[Crossref]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473–3484 (2003).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw Hill Professional, 2009).

Wei, Q.

Weinberg, S.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Weinmann, M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Weintraub, J. B.

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

Weir, N. M.

Wells, W. A.

V. Krishnaswamy, A. M. Laughney, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Scanning in situ spectroscopy platform for imaging surgical breast tissue specimens,” Opt. Express 21, 2185–2194 (2013).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Weng, L.

Wesseling, J.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

Wilson, R. H.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Woehrer, A.

Woodward, T.

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

Woosley, J. T.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Wouters, M. W.

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Xiang, M.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Xu, C.

Yafi, A.

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Yakovlev, V. V.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Yang, B.

Yang, C.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

Yee, E. U.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Yen, E.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Yi, J.

Yu, H.

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012).
[Crossref]

Yun, S. H.

Zaher, S. M.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Zakharov, Y.

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Zakharov, Y. N.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

Zeitouni, N. C.

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Zhang, D.

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Zhang, H. F.

Zhang, L.

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

Zhang, S.

Zhao, Y.

Zheng, J.-Y.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
[Crossref]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
[Crossref]

Zhou, L.

Zhou, Y.

Zhu, Y.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18, 14616–14626 (2010).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Ziefle, C. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

Zonios, G.

Zou, J.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

Zouvani, I.

Acad. Radiol. (1)

D. J. Rohrbach, D. P. Muffoletto, J. Huihui, R. B. Saager, K. L. Keymel, A. D. Paquette, J. M. Morgan, N. C. Zeitouni, and U. Sunar, “Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging,” Acad. Radiol. 21, 263–270 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Am. J. Gastroenterol. (1)

M. Skacel, R. E. Petras, T. L. Gramlich, J. E. Sigel, J. E. Richter, and J. R. Goldblum, “The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression,” Am. J. Gastroenterol. 95, 3383–3387 (2000).
[Crossref]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref]

Ann. Biomed. Eng. (1)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).

Ann. Surg. Oncol. (1)

H. Suh, O. A’amar, E. Rodriguez-Diaz, S. Lee, I. Bigio, and J. E. Rosen, “Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules,” Ann. Surg. Oncol. 18, 1300–1305 (2011).
[Crossref]

Appl. Opt. (8)

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[Crossref]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[Crossref]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48, D20–D25 (2009).
[Crossref]

G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48, 3490–3496 (2009).
[Crossref]

X. Lin, N. Wan, L. Weng, and Y. Zhou, “Light scattering from normal and cervical cancer cells,” Appl. Opt. 56, 3608–3614 (2017).
[Crossref]

X. Lin, N. Wan, L. Weng, and Y. Zhou, “Angular-dependent light scattering from cancer cells in different phases of the cell cycle,” Appl. Opt. 56, 8154–8158 (2017).
[Crossref]

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493–541 (2007).
[Crossref]

Biomed. Opt. Express (14)

J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8, 3045–3052 (2017).
[Crossref]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref]

M. Kassinopoulos, E. Bousi, I. Zouvani, and C. Pitris, “Correlation of the derivative as a robust estimator of scatterer size in optical coherence tomography (OCT),” Biomed. Opt. Express 8, 1598–1606 (2017).
[Crossref]

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6, 2755–2765 (2015).
[Crossref]

Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 3339–3345 (2015).
[Crossref]

S. Kim, S. Heflin, L. A. Kresty, M. Halling, L. N. Perez, D. Ho, M. Crose, W. Brown, S. Farsiu, V. Arshavsky, and A. Wax, “Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography,” Biomed. Opt. Express 7, 1400–1414 (2016).
[Crossref]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2, 3284–3294 (2011).
[Crossref]

D. Arifler, C. Macaulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5, 485–498 (2014).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5, 3467–3481 (2014).
[Crossref]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
[Crossref]

M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9, 3464–3480 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9, 3581–3589 (2018).
[Crossref]

Biophys. J. (6)

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical phase measurements of disorder strength link microstructure to cell stiffness,” Biophys. J. 112, 692–702 (2017).
[Crossref]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[Crossref]

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophys. J. 15, 191–203 (1975).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99, 989–996 (2010).
[Crossref]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007).
[Crossref]

Cancer Res. (3)

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69, 5357–5363 (2009).
[Crossref]

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72, 2738–2745 (2012).
[Crossref]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).

Clin. Cancer Res. (2)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[Crossref]

Gastroenterology (5)

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
[Crossref]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref]

T. Benaglia, L. D. Sharples, R. C. Fitzgerald, and G. Lyratzopoulos, “Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus,” Gastroenterology 144, 62–73.e6 (2013).
[Crossref]

Gastrointestinal Endoscopy (4)

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointestinal Endoscopy 81, 539–547 (2015).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointestinal Endoscopy 63, 257–261 (2006).
[Crossref]

M. Patel, A. Gomes, S. Ruderman, D. Hardee, S. Crespo, M. Raimondo, T. Woodward, V. Backman, H. Roy, and M. Wallace, “Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreatic cancer,” Gastrointestinal Endoscopy 80, 786–793.e2 (2014).
[Crossref]

N. G. Terry, N. G. Terry, Y. Zhu, S. C. Gebhart, W. J. Brown, S. D. Bright, E. E. Carretta, J. T. Woosley, and N. J. Shaheen, “Detection of dysplasia in Barrett’s esophagus with angle-resolved low coherence interferometry,” Gastrointestinal Endoscopy 71, Ab121–Ab122 (2010).
[Crossref]

Gut (1)

L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078–1083 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[Crossref]

Int. J. Cancer (1)

D. Ho, T. K. Drake, K. K. Smith-McCune, T. M. Darragh, L. Y. Hwang, and A. Wax, “Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology,” Int. J. Cancer 140, 1447–1456 (2017).
[Crossref]

J. Biomed. Opt. (15)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[Crossref]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16, 106002 (2011).
[Crossref]

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15, 040504 (2010).
[Crossref]

D. M. McClatchy, A. Ponticorvo, S. D. Konecky, H. Cui, T. B. Rice, B. Choi, A. J. Durkin, and B. J. Tromberg, “Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue,” J. Biomed. Opt. 24, 1–11 (2018).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[Crossref]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
[Crossref]

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93–99 (2002).
[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt. 19, 036013 (2014).
[Crossref]

A. J. Gomes, S. K. Ruderman, V. Backman, M. D. Cruz, R. K. Wali, and H. K. Roy, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–229 (2000).
[Crossref]

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19, 96003 (2014).
[Crossref]

J. Biophoton. (3)

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophoton. 9, 1068–1076 (2016).
[Crossref]

Z. A. Steelman, W. J. Eldridge, and A. Wax, “Response to Comment on ‘Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies’,” J. Biophoton. 11, e201800091 (2018).
[Crossref]

Z. A. Steelman, W. J. Eldridge, J. B. Weintraub, and A. Wax, “Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies,” J. Biophoton. 10, 1714–1722 (2017).
[Crossref]

J. Invest. Dermatol. (1)

T. C. B. Schut, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transfer 146, 207–213 (2014).
[Crossref]

Laser Med. Sci. (1)

O. A’amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, and I. Bigio, “Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment,” Laser Med. Sci. 28, 1323–1329 (2013).
[Crossref]

Lasers Surg. Med. (3)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42, 15–23 (2010).
[Crossref]

A. Yafi, F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole, and E. N. Mostow, “Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers,” Lasers Surg. Med. 49, 827–834 (2017).
[Crossref]

Light: Sci. Appl. (1)

L. Qiu, R. Chuttani, D. K. Pleskow, V. Turzhitsky, U. Khan, Y. N. Zakharov, L. Zhang, T. M. Berzin, E. U. Yee, M. S. Sawhney, Y. Li, E. Vitkin, J. D. Goldsmith, I. Itzkan, and L. T. Perelman, “Multispectral light scattering endoscopic imaging of esophageal precancer,” Light: Sci. Appl. 7, 17174 (2018).
[Crossref]

Lung Cancer (1)

J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer 80, 165–171 (2013).
[Crossref]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]

Nat. Biomed. Eng. (1)

L. Zhang, D. K. Pleskow, V. Turzhitsky, E. U. Yee, T. M. Berzin, M. Sawhney, S. Shinagare, E. Vitkin, Y. Zakharov, U. Khan, F. Wang, J. D. Goldsmith, S. Goldberg, R. Chuttani, I. Itzkan, L. Qiu, and L. T. Perelman, “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
[Crossref]

Nat. Med. (2)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011).
[Crossref]

Neurophotonics (1)

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. K. Bazrafkan, M. Hosseini-Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, and Y. Akbari, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4, 1 (2017).
[Crossref]

Opt. Express (8)

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009).
[Crossref]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18, 14616–14626 (2010).
[Crossref]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19, 10913–10922 (2011).
[Crossref]

J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473–3484 (2003).
[Crossref]

Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23, 15792–15805 (2015).
[Crossref]

V. Krishnaswamy, A. M. Laughney, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Scanning in situ spectroscopy platform for imaging surgical breast tissue specimens,” Opt. Express 21, 2185–2194 (2013).
[Crossref]

Opt. Lett. (12)

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
[Crossref]

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012).
[Crossref]

J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37, 4443–4445 (2012).
[Crossref]

Z. A. Steelman, D. Ho, K. K. Chu, and A. Wax, “Scanning system for angle-resolved low-coherence interferometry,” Opt. Lett. 42, 4581–4584 (2017).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34, 1372–1374 (2009).
[Crossref]

V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett. 36, 1911–1913 (2011).
[Crossref]

U. Morgner, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

J. F. De Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[Crossref]

Photodiagn. Photodyn. Ther. (1)

T. Upile, W. Jerjes, H. Radhi, J. Mahil, A. Rao, and C. Hopper, “Elastic scattering spectroscopy in assessing skin lesions: an ‘in vivo’ study,” Photodiagn. Photodyn. Ther. 9, 132–141 (2012).
[Crossref]

Phys. Biol. (1)

J. S. Kim, P. Pradhan, V. Backman, and I. Szleifer, “The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis,” Phys. Biol. 8, 015004 (2011).
[Crossref]

Phys. Med. Biol. (2)

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[Crossref]

E. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Phys. Rev. Lett. (2)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008).
[Crossref]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]

Proc. IEEE (1)

S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm,” Proc. IEEE 5, 265–268 (2004).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20118–20123 (2008).
[Crossref]

L. M. Almassalha, G. M. Bauer, J. E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. T. Ruhoff, H. K. Roy, H. Subramanian, N. S. Chandel, I. Szleifer, and V. Backman, “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy,” Proc. Natl. Acad. Sci. USA 113, E6372–E6381 (2016).

Proc. SPIE (2)

R. Reif, M. S. Amorosino, K. W. Calabro, O. M. Aamar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” Proc. SPIE 13, 3 (2008).
[Crossref]

W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. SPIE 8553, 85531O (2012).
[Crossref]

Sci. Rep. (3)

M. Lee, E. Lee, J. H. Jung, H. Yu, K. Kim, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Y. Jo, J. H. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. K. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref]

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Other (5)

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw Hill Professional, 2009).

H. C. van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).

T. Nagaoka and S. Watanabe, “A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 327–330.

T. Nagaoka and S. Watanabe, “Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 5691–5694.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (Left) (a) Illustration demonstrating an endoscopic ultrasound-guided fine-needle aspiration procedure for optical biopsy of the pancreas using LSS. (b) Endoscopic ultrasound image of the needle probe penetrating the cyst. (c) Spectra collected from two distinct source-detector separations and (d) backscattering component obtained from the LSS spectrum. (Top Right) (a) Comparison of standard biopsy forceps with integrated dual-fiber probe forceps for ESS and (b) use of forceps for polyp assessment using ESS. (Bottom Right) (a) Conventional OCT image and (b) molecular imaging true-color spectroscopic OCT, which uses a dual-window method for spectral analysis. Reproduced with permission Refs. [18,32,40]. 2015, Elsevier and 2017, 2011, Springer Nature.
Fig. 2.
Fig. 2. Instruments for studying angular scattering from cellular and tissue samples: (A) goniometric system, (B) four-dimensional elastic light-scattering fingerprints, and (C) angle-resolved low-coherence interferometry. Reproduced with permission from Refs. [61,65,66] 2002, 2011 SPIE and 2004, Elsevier.
Fig. 3.
Fig. 3. (Left) (a) Setup for diffraction phase microscopy, which enables Fourier-transform light scattering, (b) amplitude image, and (c) phase maps of polymethyl methacrylate spheres, with (d) the associated light-scattering pattern computed from the phase image. (Right) Instrumentation schematic for spatial frequency-domain imaging. Reproduced with permission from Refs. [91,92] 2012, The Optical Society and 2009, SPIE.

Tables (1)

Tables Icon

Table 1. Summary of Biomedical Light Scattering Techniques

Metrics