Abstract

Integrated photonics is a powerful platform that can improve the performance and stability of optical systems while providing low-cost, small-footprint, and scalable alternatives to implementations based on free-space optics. While great progress has been made on the development of low-loss integrated photonics platforms at telecom wavelengths, the visible wavelength range has received less attention. Yet, many applications utilize visible or near-visible light, including those in optical imaging, optogenetics, and quantum science and technology. Here we demonstrate an ultra-low-loss integrated visible photonics platform based on thin-film lithium niobate on an insulator. Our waveguides feature ultra-low propagation loss of 6 dB/m, while our microring resonators have an intrinsic quality factor of 11 million, both measured at 637 nm wavelength. Additionally, we demonstrate an on-chip visible intensity modulator with an electro-optic bandwidth of 10 GHz, limited by the detector used. The ultra-low-loss devices demonstrated in this work, together with the strong second- and third-order nonlinearities in lithium niobate, open up new opportunities for creating novel passive and active devices for frequency metrology and quantum information processing in the visible spectrum range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform

Xianwen Liu, Alexander W. Bruch, Zheng Gong, Juanjuan Lu, Joshua B. Surya, Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang
Optica 5(10) 1279-1282 (2018)

Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum

Tsung-Ju Lu, Michael Fanto, Hyeongrak Choi, Paul Thomas, Jeffrey Steidle, Sara Mouradian, Wei Kong, Di Zhu, Hyowon Moon, Karl Berggren, Jeehwan Kim, Mohammad Soltani, Stefan Preble, and Dirk Englund
Opt. Express 26(9) 11147-11160 (2018)

Ultra-low loss photonic circuits in lithium niobate on insulator

Inna Krasnokutska, Jean-Luc J. Tambasco, Xijun Li, and Alberto Peruzzo
Opt. Express 26(2) 897-904 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  3. J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
    [Crossref]
  4. L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
    [Crossref]
  5. H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
    [Crossref]
  6. S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
    [Crossref]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  8. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref]
  9. O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
    [Crossref]
  10. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  11. E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
    [Crossref]
  12. E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
    [Crossref]
  13. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
    [Crossref]
  14. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
    [Crossref]
  15. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
    [Crossref]
  16. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  17. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
    [Crossref]
  18. Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
    [Crossref]
  19. Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
    [Crossref]
  20. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref]
  21. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
    [Crossref]
  22. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [Crossref]
  23. S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
    [Crossref]
  24. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
    [Crossref]
  25. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
    [Crossref]
  26. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
    [Crossref]
  27. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
    [Crossref]
  28. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref]
  29. P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
    [Crossref]
  30. B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
    [Crossref]
  31. L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
    [Crossref]
  32. P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
    [Crossref]
  33. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
    [Crossref]
  34. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  35. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  36. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
    [Crossref]
  37. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  38. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  39. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref]
  40. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref]
  41. C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).
  42. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).
  43. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref]
  44. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
    [Crossref]
  45. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  46. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  47. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
    [Crossref]
  48. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623 (2017).
    [Crossref]
  49. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
    [Crossref]
  50. C. Zhang, L. R. Dalton, P. Rabiei, and W. H. Steier, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [Crossref]
  51. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
    [Crossref]
  52. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16, 21456–21461 (2008).
    [Crossref]
  53. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
    [Crossref]
  54. X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
    [Crossref]
  55. D. Janner, M. Belmonte, and V. Pruneri, “Tailoring the electrooptic response and improving the performance of integrated LiNbO3 modulators by domain engineering,” J. Lightwave Technol. 25, 2402–2409 (2007).
    [Crossref]
  56. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [Crossref]
  57. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]

2019 (1)

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

2018 (7)

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

2017 (7)

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

2016 (6)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

2015 (6)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

2014 (2)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

2013 (1)

2012 (2)

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

2011 (2)

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

2010 (3)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

2009 (3)

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
[Crossref]

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

2005 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

2004 (2)

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

2002 (2)

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

1995 (1)

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1962 (1)

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Adibi, A.

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Aksyuk, V. A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Andrade, N.

Andreou, A. G.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Armellini, C.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Atabaki, A. H.

Babinec, T.

Bakhru, H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Baños, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Barclay, P.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Barclay, P. E.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Belmonte, M.

Bergquist, J. C.

J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bharadwaj, V.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Bienstman, P.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Bo, F.

Bogaerts, W.

Bradley, J. D. B.

Bratschitsch, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Burgess, I. B.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, E. H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Chen, S.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, Y.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Cheng, R.

Chi, D.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Chiappini, A.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Choy, J. T.

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Claes, T.

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Cossairt, B. M.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Dalton, L. R.

Deisseroth, K.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Dellis, A. T.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Deotare, P.

Deotare, P. B.

DeSalvo, R.

Desiatov, B.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Diziain, S.

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Domínguez, C.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Donley, E. A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Eaton, S.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Eaton, S. M.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Evans, C. C.

Fan, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Fang, Q.

Faraon, A.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Fathpour, S.

Fejer, M. M.

Fernandez, T.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Fernandez, T. T.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Fernández, J.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Ferrari, M.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Finkelstein, H.

Firstenberg, O.

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fowler, T. M.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Friedfeld, M. R.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Fryett, T.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Gao, F.

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Geiss, R.

Ghosh, R. K.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Gong, Y.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Grange, R.

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

Guo, G.-C.

Guo, S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Hadden, J.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Hadden, J. P.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Hainberger, R.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hao, Z.

He, Y.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Honardoost, A.

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hu, H.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

Hummon, M.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Jankowski, M.

Janner, D.

Kafel, M.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Kahn, J.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Katz, O.

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Kern, J.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Khan, M.

Kitching, J.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Kley, E.-B.

Klimov, V. I.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Knappe, S.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Koppitsch, G.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Korth, H.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kraft, J.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kuhn, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Kwong, D. L.

Lai, Y.-H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lal, A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Langford, N. K.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Langrock, C.

Latawiec, P.

Lee, K. C.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Lee, S. H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lehtonen, S. J.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Li, L.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Li, Q.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Li, X.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Lo, G. Q.

Lo, M.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref]

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

London, S. M.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Ma, S.

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Majumdar, A.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Makarov, N. S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Mao, W.

Marandi, A.

Markham, M.

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Masmanidis, S.

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Mazur, E.

McCutcheon, M. W.

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Melnik, E.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Mercante, A. J.

Merget, F.

Michaelis de Vasconcellos, S.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Miyoshi, T.

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

Moreaux, L. C.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Muellner, P.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Muñoz, P.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Nebel, C.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Neu, E.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Niehues, I.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Nunn, J.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Oh, D. Y.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Paolella, A.

Park, Y.-S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Parsons, L. W.

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Patil, A.

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Pernice, W. H. P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Pertsch, T.

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Prather, D. W.

Pruneri, V.

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Rabiei, P.

Rampini, S.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Ramponi, R.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Rao, A.

Rath, P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Reim, K. F.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Reimer, J.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Reiter, D. E.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Ren, X.-F.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Romalis, M. V.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Romero-García, S.

Roukes, M. L.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Roxworthy, B.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Ryou, A.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Sacher, W. D.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Saravi, S.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Savukov, I. M.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Schmidt, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Schneider, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Schrank, F.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Schrempel, F.

Schröder, T.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Schuck, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Segev, E.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Sergeyev, A.

Serpengüzel, A.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Setzpfandt, F.

Shah Hosseini, E.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Shen, B.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Sherman, J.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Shi, S.

Shim, E.

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Smullin, S. J.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Soltani, M.

Song, J. F.

Sotillo, B.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Srinivasan, K.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Steier, W. H.

Stiehm, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Strekalov, D.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Strohbehn, K.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Sun, X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tao, S. H.

Tejada, F.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Tolias, A. S.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Tonndorf, P.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Tünnermann, A.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Ummethala, S.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Vahala, K.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Vasilakis, G.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Venkataraman, V.

Vuckovic, J.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

Walmsley, I. A.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, C.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Wang, H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Wang, J.

Wang, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Weikle, R. M.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Westly, D.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Whitehead, J.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Wiatr, Z. M.

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Wigger, D.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Witzens, J.

Xia, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Xie, L.

Xiong, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Xiong, X.

Xu, J.

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Yang, K. Y.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yang, Q.-F.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yao, P.

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Yegnanarayanan, S.

Yi, X.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yu, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Yu, M. B.

Zhang, C.

Zhang, G.

Zhang, M.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Zhang, X.

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

Zhong, F.

Zhu, R.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

ACS Nano (1)

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Adv. Mater. (1)

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Adv. Opt. Mater. (1)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (3)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

J. Geophys. Res. (Space Phys.) (1)

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. Conf. Ser. (1)

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

J. Sci. Instrum. (1)

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Jpn. J. Appl. Phys. (1)

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Micromachines (1)

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Nano Lett. (1)

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Nat. Commun. (4)

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

Nat. Nanotechnol. (1)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Nat. Photonics (2)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Neurophotonics (1)

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

New J. Phys. (1)

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (3)

Photon. Nanostruct. Fundam. Applic. (1)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Phys. Rev. B (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Phys. Rev. Lett. (2)

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Phys. Status Solidi (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Procedia Eng. (1)

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Sci. Rep. (1)

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Sensors (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Other (3)

J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a)–(c) Finite element simulation of TE00 waveguide mode near three different wavelengths: 635 nm, 850 nm, and 1550 nm; wW=480nm is waveguide width and wT=120nm is LN slab thickness. (d) False-color SEM micrograph of the waveguide cross section. (e) 2D AFM scan on LN waveguide. (f) AFM line profile of LN waveguide.
Fig. 2.
Fig. 2. (a) SEM micrograph of a fabricated microring resonator (radius=100μm). (b) SEM image of the coupling region.
Fig. 3.
Fig. 3. (a) Measured transmission spectrum of TFLN microring cavity near 635 nm wavelengths. (b)–(d) Fit of the resonance dips to Lorentzian function at wavelengths of 637 nm, 730 nm, and 800 nm, respectively. Experimental data shown as blue dots and fit function shown as red line.
Fig. 4.
Fig. 4. (a) Mask layout of fabricated device. (b) Measured transmission of cascaded Y-splitter tree as a function of number of Y-splitter branches. The orange line shows a linear fit with a slope of 3.21dB/splitter. (c) Dark field optical microscope image of the unbalanced MZI. Scale bar: 50 μm. (d) Measured transmission spectrum of the MZI showing extinction ratios of 30dB. Inset: SEM micrograph of Y-splitter section. Scale bar: 2 μm.
Fig. 5.
Fig. 5. (a) Optical image of the fabricated LN amplitude modulator. (b) Measured normalized transmission versus applied DC voltage showing a half-wave voltage of 8 V for a 2-mm-long device at a wavelength of 850 nm. Measured electro-optical response of the amplitude modulator. (c) The 3-dB cutoff frequency is 10GHz, limited by the detector. Inset: Measured electrical insertion loss (S21 parameters) shows an electrical (3-dB) bandwidth of 17 GHz.

Metrics