Abstract

The recent demonstration of dissipative Kerr solitons in microresonators has opened a new pathway for the generation of ultrashort pulses and low-noise frequency combs with gigahertz to terahertz repetition rates, enabling applications in frequency metrology, astronomy, optical coherent communications, and laser-based ranging. A main challenge for soliton generation, in particular in ultra-high-Q resonators, is the sudden change in circulating intracavity power during the onset of soliton generation. This sudden power change requires precise control of the seed laser frequency and power or fast control of the resonator temperature. Here, we report a robust and simple way to increase the soliton access window by using an auxiliary laser that passively stabilizes intracavity power. In our experiments with fused silica resonators, we are able to extend the access range of microresonator solitons by two orders of magnitude, which enables soliton generation by slow and manual tuning of the pump laser into resonance and at unprecedented low power levels. Importantly, this scheme eliminates the sudden change in circulating power (“soliton step”) during transition into the soliton regime. Both single- and multi-soliton mode-locked states are generated in a 1.3-mm-diameter fused silica microrod resonator with a free spectral range of 50.6GHz, at a 1554 nm pump wavelength at threshold powers <3mW. Moreover, with a smaller 230-μm-diameter microrod, we demonstrate soliton generation at 780 μW threshold power. The passive enhancement of the soliton access range paves the way for robust and low-threshold microcomb systems and has the potential to be a practical tool for soliton microcomb generation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Stably accessing octave-spanning microresonator frequency combs in the soliton regime

Qing Li, Travis C. Briles, Daron A. Westly, Tara E. Drake, Jordan R. Stone, B. Robert Ilic, Scott A. Diddams, Scott B. Papp, and Kartik Srinivasan
Optica 4(2) 193-203 (2017)

Ultralow-power chip-based soliton microcombs for photonic integration

Junqiu Liu, Arslan S. Raja, Maxim Karpov, Bahareh Ghadiani, Martin H. P. Pfeiffer, Botao Du, Nils J. Engelsen, Hairun Guo, Michael Zervas, and Tobias J. Kippenberg
Optica 5(10) 1347-1353 (2018)

Soliton frequency comb at microwave rates in a high-Q silica microresonator

Xu Yi, Qi-Fan Yang, Ki Youl Yang, Myoung-Gyun Suh, and Kerry Vahala
Optica 2(12) 1078-1085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
    [Crossref]
  2. C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
    [Crossref]
  3. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
    [Crossref]
  4. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
    [Crossref]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
    [Crossref]
  6. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
    [Crossref]
  7. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16, 16509–16515 (2008).
    [Crossref]
  8. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
    [Crossref]
  9. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, and C. Sweeney, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
    [Crossref]
  10. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  11. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  12. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
    [Crossref]
  13. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
    [Crossref]
  14. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  15. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
    [Crossref]
  16. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref]
  17. S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
    [Crossref]
  18. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  19. P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
    [Crossref]
  20. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
    [Crossref]
  21. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
    [Crossref]
  22. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  23. B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  24. M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref]
  25. M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
    [Crossref]
  26. X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
    [Crossref]
  27. E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
    [Crossref]
  28. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
    [Crossref]
  29. M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton microcombs,” Optica 5, 65–66 (2018).
    [Crossref]
  30. S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
    [Crossref]
  31. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
    [Crossref]
  32. E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).
  33. M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).
  34. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
    [Crossref]
  35. M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
    [Crossref]
  36. P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
    [Crossref]
  37. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  38. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
    [Crossref]
  39. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
    [Crossref]
  40. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
    [Crossref]
  41. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
    [Crossref]
  42. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  43. Z. Kang, F. Li, J. Yuan, K. Nakkeeran, J. N. Kutz, Q. Wu, C. Yu, and P. Wai, “Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger,” Opt. Express 26, 18563–18577 (2018).
    [Crossref]
  44. X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
    [Crossref]
  45. V. Brasch, M. Geiselmann, M. H. Pfeiffer, and T. J. Kippenberg, “Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state,” Opt. Express 24, 29312–29320 (2016).
    [Crossref]
  46. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
    [Crossref]
  47. J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
    [Crossref]
  48. N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
    [Crossref]
  49. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
    [Crossref]
  50. Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.
  51. Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
    [Crossref]
  52. C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4, 1011–1015 (2017).
    [Crossref]
  53. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
    [Crossref]
  54. P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
    [Crossref]
  55. J. Jost, E. Lucas, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “All-optical stabilization of a soliton frequency comb in a crystalline microresonator,” Opt. Lett. 40, 4723–4726 (2015).
    [Crossref]
  56. Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).
  57. R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

2018 (12)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton microcombs,” Optica 5, 65–66 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

Z. Kang, F. Li, J. Yuan, K. Nakkeeran, J. N. Kutz, Q. Wu, C. Yu, and P. Wai, “Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger,” Opt. Express 26, 18563–18577 (2018).
[Crossref]

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

2017 (10)

C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4, 1011–1015 (2017).
[Crossref]

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

2016 (7)

2015 (5)

J. Jost, E. Lucas, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “All-optical stabilization of a soliton frequency comb in a crystalline microresonator,” Opt. Lett. 40, 4723–4726 (2015).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

2014 (5)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, and C. Sweeney, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

2013 (1)

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

2012 (2)

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

2011 (4)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

2010 (1)

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

2008 (2)

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16, 16509–16515 (2008).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2004 (1)

2001 (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Anderson, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Bao, C.

Baumann, E.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Bowers, J. E.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Brasch, V.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

V. Brasch, M. Geiselmann, M. H. Pfeiffer, and T. J. Kippenberg, “Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state,” Opt. Express 24, 29312–29320 (2016).
[Crossref]

J. Jost, E. Lucas, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “All-optical stabilization of a soliton frequency comb in a crystalline microresonator,” Opt. Lett. 40, 4723–4726 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Briles, T. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Bulu, I.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Cardenas, J.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Carlson, D. R.

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

Carmon, T.

Cecconi, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Chazelas, B.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Chen, H.-J.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Chen, T.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Cromer, C.

Cui, W.

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Del’Haye, P.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Deotare, P.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Diddams, S. A.

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Dong, C.-H.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Doppmann, G.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Drake, T. E.

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fitzgerald, M. P.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Foster, M. A.

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Gaeta, A. L.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

V. Brasch, M. Geiselmann, M. H. Pfeiffer, and T. J. Kippenberg, “Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state,” Opt. Express 24, 29312–29320 (2016).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Geng, Y.

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

Ghedina, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Giorgetta, F. R.

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Griffith, A. G.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grudinin, I. S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Guo, G.-C.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Guo, H.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Harutyunyan, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Hausmann, B.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Herkommer, C.

Herr, T.

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Jost, E. Lucas, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “All-optical stabilization of a soliton frequency comb in a crystalline microresonator,” Opt. Lett. 40, 4723–4726 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Hollberg, L.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Huang, S.-W.

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Huang, X.

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Jang, J. K.

Jaramillo-Villegas, J. A.

Ji, X.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Joshi, C.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

Jost, J.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kang, Z.

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

Kärtner, F. X.

Kim, J.

Kippenberg, T.

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

V. Brasch, M. Geiselmann, M. H. Pfeiffer, and T. J. Kippenberg, “Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state,” Opt. Express 24, 29312–29320 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Klenner, A.

Koelemeij, J. C.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

Kofler, J.

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Kundermann, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Kutz, J. N.

Kuzucu, O.

Kwong, D.-L.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Lai, Y.-H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Leaird, D. E.

Lecaplain, C.

Lecomte, S.

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Lee, H.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Lee, S. H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leifer, S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Levy, J. S.

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Li, F.

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Li, Q.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Li, X.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Liao, M.

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

Lihachev, G.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Lim, J.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Lin, Q.

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

Ling, Y.

Lipson, M.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

Little, B.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Little, B. E.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Liu, J.

Liu, M.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Lobanov, V. E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Loncar, M.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Lu, Z.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Lu, Z.-Z.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Lucas, E.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Luke, K.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

Luo, R.

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

Ma, T.-G.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Martin, E. C.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Miller, S. A.

Mohanty, A.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Morton, P. A.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Moss, D.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Nakkeeran, K.

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Niu, R.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Obrzud, E.

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Oh, D. Y.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Okawachi, Y.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Papp, S. B.

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

Park, M. J.

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Perrott, M. H.

Petron, G.

Pfeiffer, M.

Pfeiffer, M. H.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

V. Brasch, M. Geiselmann, M. H. Pfeiffer, and T. J. Kippenberg, “Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state,” Opt. Express 24, 29312–29320 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Picqué, N.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Qi, M.

Qiu, K.

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Rainer, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Rieker, G. B.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Saha, K.

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schmidt, P. O.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Shen, B.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, and C. Sweeney, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Spencer, D. T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

Srinivasan, K.

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Stanton, E. J.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Stone, J. R.

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Suh, M.-G.

M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton microcombs,” Optica 5, 65–66 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Sun, S.-M.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Sun, X.

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

Swann, W. C.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, and C. Sweeney, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Sweeney, C.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Udem, T.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Vahala, K.

Vahala, K. J.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Vasisht, G.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Venkataraman, V.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Volet, N.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Wabnitz, S.

Wai, P.

Wan, S.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Wang, H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Wang, J.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Wang, L.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Wang, P.-H.

Wang, W.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Wang, W.-Q.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Weiner, A. M.

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Westly, D. A.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wineland, D. J.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Wong, C.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Wu, B.

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

Wu, Q.

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Xu, B.

Xuan, Y.

Xue, X.

Yang, J.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Yang, K. Y.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

Yang, L.

Yang, Q. F.

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Yang, Q.-F.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

Yi, X.

Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, and K. Qiu, “Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb,” Opt. Lett. 43, 2406–2409 (2018).
[Crossref]

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Yu, C.

Yu, M.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Yuan, J.

Zervas, M.

Zhang, J.

Zhang, W.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Zhang, W.-F.

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Zhang, X. C.

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

Zhao, B.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

Zhou, H.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

Zolot, A. M.

Zou, C.-L.

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Appl. Phys. Lett. (1)

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

Laser Photon. Rev. (1)

N. Volet, X. Yi, Q. F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, “Micro-resonator soliton generated directly with a diode laser,” Laser Photon. Rev. 12, 1700307 (2018).
[Crossref]

Nat. Commun. (5)

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. Little, S. T. Chu, D. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Nat. Photonics (8)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

Nat. Phys. (2)

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Nature (4)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optica (7)

Phys. Rev. A (1)

X. Sun, R. Luo, X. C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017).
[Crossref]

Phys. Rev. Lett. (3)

J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, “Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs,” Phys. Rev. Lett. 121, 063902 (2018).
[Crossref]

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Sci. Adv. (1)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

Sci. Rep. (1)

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. Wong, “A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65  THz,” Sci. Rep. 5, 13355 (2015).
[Crossref]

Science (8)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, and S. Randel, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Other (5)

Y. Geng, M. Liao, H. Zhou, B. Wu, and K. Qiu, “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Optics (Optical Society of America, 2017), paper NM1A. 4.

E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, and A. Ghedina, “A microphotonic astrocomb,” arXiv:1712.09526 (2017).

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and J. Wang, “Searching for exoplanets using a microresonator astrocomb,” arXiv:1801.05174 (2018).

Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, and B. Zhao, “Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator,” arXiv:1810.04983 (2018).

R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, and C.-L. Zou, “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

Supplementary Material (2)

NameDescription
» Supplement 1       Supplemental Document
» Visualization 1       Passive stabilization microresonator modes using an auxiliary laser. Animated version of Figure 1 in the paper “µW-Level Microresonator Solitons with Extended Stability Range Using an Auxiliary Laser”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Scheme of using an auxiliary laser to assist in accessing soliton states. The 1.5 μm pump laser generates a microresonator soliton while the second laser at 1.3 μm wavelength passively stabilizes the intracavity power. (b) Illustration of the intracavity power (red: 1.5 μm, green: 1.3 μm) before (left panel) and after (right panel) soliton generation. (c) Microscope image of the 1.3-mm-diameter fused silica microrod resonator used in the experiments. Panels (d)–(f) show the principle of the passive compensation of the circulating power in the microresonator by the auxiliary laser in order to enhance the soliton range (animated version available in Visualization 1). In panel (d), only the auxiliary laser is coupled into a resonator mode. When tuning the pump laser into resonance, shown in panel (e), the thermal shift of the resonator modes automatically reduces the amount of light coupled into the auxiliary resonator mode. Panel (f) shows the abrupt transition into a soliton state, which reduces the coupled power of the pump laser. In this state, the pump resonance splits into C-resonance (resonance for light arriving out-of-sync with the soliton) and S-resonance (resonance for light arriving in-sync with the soliton). The reduction in pump power in the soliton regime moves the auxiliary resonance back towards the auxiliary laser and thus compensates the power loss. Panel (g) shows the temporal evolution of the intracavity power when tuning the pump laser into resonance with a fixed frequency auxiliary laser. Panel (h) shows a measurement according to the scheme in panel (g). The two steps in soliton regime correspond to different soliton numbers circulating in the cavity. The 1.3 μm auxiliary laser passively compensates changes in circulating power of the pump laser.
Fig. 2.
Fig. 2. (a) Experimental setup for the generation of a soliton mode-locked frequency comb in a silica microrod resonator by using an auxiliary laser to compensate the resonator’s thermal shift. ECDL, external cavity diode laser; WDM, wavelength division multiplexer; PC, polarization controller; FBG, fiber Bragg grating; PD, photodetector; OSC, oscilloscope; OSA, optical spectrum analyzer; ESA, electronic spectrum analyzer. (b) Optical spectrum of a single-soliton state pumped with 80 mW optical power compensated by 60 mW auxiliary laser power. The red dashed line shows the fitted sech2 envelope. Inset: spectrum of the microwave repetition rate frep of the single-soliton state measured with a 1 kHz resolution bandwidth (RBW). (c) Optical spectrum of a two-soliton state pumped with the same settings of pump and auxiliary laser as Fig. 2(b). (d) Optical spectrum of a single-soliton state pumped at 3 mW power with a fitted sech2 envelope. (e) Optical spectrum of a single-soliton state in a 230-μm-diameter microrod pumped with 780 μW power.
Fig. 3.
Fig. 3. Enhancement of the soliton access range. (a) Experimental traces of the 1550 nm intracavity power when scanning the pump laser frequency from blue to red detuning without auxiliary laser (upper panel) and with auxiliary laser (lower panel). The laser tuning speed is 35MHz/ms. The inset in the upper panel shows a trace of the narrow soliton step with a width of 100kHz without auxiliary laser. The lower panel shows the same resonance while 50 mW auxiliary power is coupled into the resonator. The thermally broadened width of the resonance is reduced, while the soliton access range is increased by two orders of magnitude to 10MHz. The presence of the auxiliary laser eliminates the sudden power change (“soliton step”) during the transition into the soliton regime. (b) Traces of the 1550 nm intracavity power for different multi-soliton states (with auxiliary laser).
Fig. 4.
Fig. 4. Tuning behavior of the doubly pumped resonator system. (a) (b) Experimental and numerically calculated traces of the shape of the thermally broadened resonances at 1550 nm at different fixed detunings of the 1330 nm laser from the auxiliary resonance. The 1550 nm pump laser is tuned at 35MHz/ms during the measurement. (c) Experimental measurement (squares) of the width of 1550 nm resonances as a function of the detuning of the 1330 nm auxiliary laser from its resonance. The red line is a simulation based on the thermal dynamic behavior of a doubly pumped microresonator. (d) Experimental measurement and linear fit of the relative resonance shift of the 1550 nm and 1330 nm modes with a slope of 0.862.

Metrics