Abstract

Nanophotonic wavelength routers, which can separate and steer different incident optical wavelengths into different output ports, play a key role in many applications of integrated photonic devices. We design and experimentally demonstrate ultrasmall broadband wavelength routers using an intelligent algorithm that combines a genetic algorithm and the finite element method. The size of the device is only 1.4μm×1.8μm, around the optical communication range, and is the smallest one demonstrated experimentally. The maximum transmission is 98% in the simulation and 71% in the experiment. Moreover, we show that various wavelength routers with different materials (both dielectric and metal), different structures, different output ports, and different operation bands can be conveniently designed using the intelligent algorithm. The average position error tolerance for each cell structure is about ±20nm for all the wavelength routers designed by our intelligent algorithm, which is possible with current nanofabrication technology. This work provides a universal platform for the realization of nanophotonic wavelength routers, and enables the design and integration of nanophotonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated silicon photonic device design by attractor selection mechanism based on artificial neural networks: optical coupler and asymmetric light transmitter

Emre Bor, Onur Alparslan, Mirbek Turduev, Y. Sinan Hanay, Hamza Kurt, Shin’ichi Arakawa, and Masayuki Murata
Opt. Express 26(22) 29032-29044 (2018)

Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings

Nazirul A. Idris, Katsumi Yoshizawa, Yasunori Tomomatsu, Makoto Sudo, Tadashi Hajikano, Ryogo Kubo, Georgios Zervas, and Hiroyuki Tsuda
Opt. Express 24(1) 672-686 (2016)

Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits

Daoxin Dai and Mao Mao
Opt. Express 23(22) 28376-28388 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
    [Crossref]
  2. K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
    [Crossref]
  3. B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
    [Crossref]
  4. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  5. J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [Crossref]
  6. C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
    [Crossref]
  7. O. M. Nawwar, H. Shalaby, and R. K. Pokharel, “Photonic crystal-based compact hybrid WDM/MDM (De)multiplexer for SOI platforms,” Opt. Lett. 43, 4176–4179 (2018).
    [Crossref]
  8. H. Ito, T. Tatebe, H. Abe, and T. Baba, “Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing,” Opt. Express 26, 26145–26155 (2018).
    [Crossref]
  9. Y. Chen, S. Wang, T. Lang, and J. J. He, “Uniform-loss cyclic arrayed waveguide grating router using a mode-field converter based on a slab coupler and auxiliary waveguides,” Opt. Lett. 44, 211–214 (2019).
    [Crossref]
  10. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
    [Crossref]
  11. D. T. Pham and D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000), p. 3.
  12. S. Forrest, “Genetic algorithms: principles of natural selection applied to computation,” Science 261, 872–878 (1993).
    [Crossref]
  13. J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15, 8218–8230 (2007).
    [Crossref]
  14. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
    [Crossref]
  15. Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
    [Crossref]
  16. Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42, 3093–3096 (2017).
    [Crossref]
  17. A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam, and K. K. Tsia, “Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging,” Optica 2, 1037–1044 (2015).
    [Crossref]
  18. G. Pu, L. Yi, L. Zhang, and W. Hu, “Intelligent programmable mode-locked fiber laser with a human-like algorithm,” Optica 6, 362–369 (2019).
    [Crossref]
  19. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  20. L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
    [Crossref]
  21. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  23. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [Crossref]
  24. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
    [Crossref]
  25. C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4, 794–798 (2008).
    [Crossref]
  26. H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
    [Crossref]
  27. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
    [Crossref]
  28. H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
    [Crossref]
  29. C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
    [Crossref]
  30. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
    [Crossref]
  31. S. Dwivedi, A. Ruocco, M. Vanslembrouck, T. Spuesens, P. Bienstman, P. Dumon, T. Van Vaerenbergh, and W. Bogaerts, “Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers,” J. Lightwave Technol. 33, 4471–4477 (2015).
    [Crossref]
  32. C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
    [Crossref]
  33. C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
    [Crossref]

2019 (4)

K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Y. Chen, S. Wang, T. Lang, and J. J. He, “Uniform-loss cyclic arrayed waveguide grating router using a mode-field converter based on a slab coupler and auxiliary waveguides,” Opt. Lett. 44, 211–214 (2019).
[Crossref]

G. Pu, L. Yi, L. Zhang, and W. Hu, “Intelligent programmable mode-locked fiber laser with a human-like algorithm,” Optica 6, 362–369 (2019).
[Crossref]

2018 (3)

2017 (4)

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42, 3093–3096 (2017).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

2016 (1)

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

2015 (4)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

S. Dwivedi, A. Ruocco, M. Vanslembrouck, T. Spuesens, P. Bienstman, P. Dumon, T. Van Vaerenbergh, and W. Bogaerts, “Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers,” J. Lightwave Technol. 33, 4471–4477 (2015).
[Crossref]

A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam, and K. K. Tsia, “Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging,” Optica 2, 1037–1044 (2015).
[Crossref]

2014 (1)

2013 (1)

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

2011 (3)

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
[Crossref]

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

2008 (1)

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4, 794–798 (2008).
[Crossref]

2007 (2)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15, 8218–8230 (2007).
[Crossref]

2003 (1)

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
[Crossref]

2001 (1)

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

2000 (1)

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

1997 (1)

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

1993 (1)

S. Forrest, “Genetic algorithms: principles of natural selection applied to computation,” Science 261, 872–878 (1993).
[Crossref]

1991 (1)

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1958 (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Abe, H.

Afshinmanesh, F.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Anderson, P. W.

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Ankonina, G.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Baba, T.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Bartal, G.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

Bienstman, P.

Blum, R.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Bogaerts, W.

Böttger, G.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Brongersma, M. L.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Cai, W.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Cao, H.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Chan, A. C. S.

Chang, R. P.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Chang, S.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Chen, S.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Chen, Y.

Choquette, K. D.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Conti, C.

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4, 794–798 (2008).
[Crossref]

Cui, H.

Danner, A. J.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
[Crossref]

Dumon, P.

Dwivedi, S.

Eich, M.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Elsner, H.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Englund, D.

Fan, S.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Ferrera, J.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

Foresi, J. S.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Forrest, S.

S. Forrest, “Genetic algorithms: principles of natural selection applied to computation,” Science 261, 872–878 (1993).
[Crossref]

Fratalocchi, A.

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4, 794–798 (2008).
[Crossref]

Fushman, I.

Genack, A. Z.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Girard, C.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Goh, J.

Gong, Q.

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
[Crossref]

He, J. J.

He, Y.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Hu, W.

Hu, X.

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
[Crossref]

Ippen, E. P.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Ito, H.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Jin, W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Jin, Z.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Joannopoulos, J. D.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

John, S.

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Karaboga, D.

D. T. Pham and D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000), p. 3.

Kimerling, L. C.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Kuligk, A.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Kunert, J.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lam, E. Y.

Lang, T.

Larrieu, G.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Lau, A. K. S.

Lecestre, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Li, Y.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Liguda, C.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Lin, Z.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Liu, J. S. Q.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Liu, X.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Liu, Y.

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

Lu, C.

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lukyanchuk, B.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Lumer, Y.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Mei, S.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Meyer, H. G.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Molesky, S.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Morgenroth, W.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Nawwar, O. M.

Paillard, V.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Pala, R. A.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Petykiewicz, J.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Pham, D. T.

D. T. Pham and D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000), p. 3.

Piggott, A. Y.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Pokharel, R. K.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Pu, G.

Qiu, C.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Rodriguez, A. W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Roth, H.

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

Ruocco, A.

Sapra, N. V.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

Seelig, E. W.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Segev, M.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

Shalaby, H.

Sheinfux, H. H.

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Smith, H. I.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Spuesens, T.

Steinmeyer, G.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Su, L.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Sun, X.

Tatebe, T.

Thoen, E. R.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Tsia, K. K.

Unni, D. R.

K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Van Vaerenbergh, T.

Vanslembrouck, M.

Villeneuve, P. R.

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Vuckovic, J.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15, 8218–8230 (2007).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Wang, S.

Wiecha, P. R.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Wong, K. K. Y.

Xiao, S.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Yang, H.

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36, 4668–4670 (2011).
[Crossref]

Yang, J. K. W.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Yao, K.

K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Yi, L.

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
[Crossref]

Yu, C.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Yu, X.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Yu, Z.

Zhang, C.

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Zhang, L.

Zheng, Y.

K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

ACS Nano (1)

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Lukyanchuk, S. Xiao, and C. Qiu, “Complex inverse design of meta-optics by segmented hierarchical evolutionary,” ACS Nano 13, 821–829 (2019).
[Crossref]

ACS Photon. (1)

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vucković, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrawide-band unidirectional surface plasmon polariton launchers,” Adv. Opt. Mater. 1, 792–797 (2013).
[Crossref]

Appl. Phys. Lett. (2)

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Appl. Phys. Lett. 82, 1344–1346 (2003).
[Crossref]

C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Nanophotonics (1)

K. Yao, D. R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Nat. Commun. (1)

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref]

Nat. Nanotechnol (1)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol 12, 163–169 (2017).
[Crossref]

Nat. Photonics (3)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Nat. Phys. (1)

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4, 794–798 (2008).
[Crossref]

Nature (2)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref]

J. Ferrera, G. Steinmeyer, L. C. Kimerling, E. R. Thoen, J. S. Foresi, J. D. Joannopoulos, P. R. Villeneuve, S. Fan, E. P. Ippen, and H. I. Smith, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (3)

Phys. Rev. (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Phys. Today (1)

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

Sci. Rep. (1)

C. Lu, Y. Liu, X. Hu, H. Yang, and Q. Gong, “Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities,” Sci. Rep. 6, 27428 (2016).
[Crossref]

Science (2)

S. Forrest, “Genetic algorithms: principles of natural selection applied to computation,” Science 261, 872–878 (1993).
[Crossref]

H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, “Observation of Anderson localization in disordered nanophotonic structures,” Science 356, 953–956 (2017).
[Crossref]

Other (1)

D. T. Pham and D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000), p. 3.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. IA method. (a) Flow chart of IA; (b) structural changes during iteration. Three graphs in order: the initial individual, the nearly half-optimized individual, the final optimized individual. The black area indicates material 1, and the white area denotes material 2.
Fig. 2.
Fig. 2. Two-channel wavelength router for metal materials. (a) Structure of the router. The blue holes are silver and the white area is filled with air. The size of the structure is 1.0 μm × 1.0 μm . (b) Simulated transmission spectrum covering from 480 to 950 nm. The transmission peaks are λ = 580 nm and λ = 805 nm , respectively. In denotes input port; O1, O2 are the upper output port and the lower output port, respectively. (c) and (d) The simulated magnitude of the electric field at 580 and 805 nm, respectively.
Fig. 3.
Fig. 3. Three-channel wavelength router. (a) Structure of the router. The light gray area indicates silicon dioxide, the purple rectangle denotes silicon. The size of the structure is 1.5 μm × 1.5 μm . (b) Simulated transmission spectrum covering from 650 to 1500 nm, where the peaks corresponding to the wavelength of 800, 1050, and 1300 nm. In denotes input port; O1, O2, and O3 are the upper output port, the lower output port, and the right output port. (c)–(e) Simulated power flow on time average at 800, 1050, and 1300 nm, respectively.
Fig. 4.
Fig. 4. (a) Electric field distribution of the TE mode. (b) 3D model of the structure. (c) and (d) Top view of the SEM images of the sample and reference sample. The left is the overall structure diagram, and the right is the enlarged image of the footprints for the device structure and reference structure, respectively. In denotes input port; O1, O2, and O3 are the upper output port, the lower output port, and the right output port, respectively.
Fig. 5.
Fig. 5. (a) Experimental setup; (b) measured transmission spectrum; (c) calculated transmission spectrum. The green solid, red dotted-dashed and blue dashed lines correspond to the top, bottom, and right output ports, respectively, and the wavelength range is from 1050 to 1950 nm.

Tables (1)

Tables Icon

Table 1. Performance Comparison of Designed Various Wavelength Routers

Metrics