Abstract

Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs have not yet been explored. Here, we experimentally demonstrate BICs in a fundamentally new photonic architecture by patterning a low-refractive-index material on a high-refractive-index substrate, where dissipation to the substrate continuum is eliminated by engineering the geometric parameters. Pivotal BIC-based photonic components are demonstrated, including waveguides, microcavities, directional couplers, and modulators. Therefore, this work presents the critical step of photonic integrated circuits with BICs, and enables the exploration of new single-crystal materials on an integrated photonic platform without the fabrication challenges of patterning the single-crystal materials. The demonstrated lithium niobate platform will facilitate development of functional photonic integrated circuits for optical communications, nonlinear optics at the single photon level, as well as scalable photonic quantum information processors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

11 October 2019: A typographical correction was made to caption Fig. 3(d),(e).


OSA Recommended Articles
Mechanical bound states in the continuum for macroscopic optomechanics

Mengdi Zhao and Kejie Fang
Opt. Express 27(7) 10138-10151 (2019)

Propagating bound states in the continuum at the surface of a photonic crystal

Zhen Hu and Ya Yan Lu
J. Opt. Soc. Am. B 34(9) 1878-1883 (2017)

Integrated flat-top reflection filters operating near bound states in the continuum

Leonid L. Doskolovich, Evgeni A. Bezus, and Dmitry A. Bykov
Photon. Res. 7(11) 1314-1322 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
    [Crossref]
  2. D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer Science & Business Media, 2013).
  3. J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 465–467 (1929).
  4. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
    [Crossref]
  5. A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
    [Crossref]
  6. C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion 45, 16–29 (2007).
    [Crossref]
  7. Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
    [Crossref]
  8. S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
    [Crossref]
  9. Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
    [Crossref]
  10. A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
    [Crossref]
  11. C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
    [Crossref]
  12. J.-X. Yan and H.-H. Fu, “Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system,” Phys. B 410, 197–200 (2013).
    [Crossref]
  13. W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
    [Crossref]
  14. M. L. Ladrón de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73, 205303 (2006).
    [Crossref]
  15. F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
    [Crossref]
  16. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
    [Crossref]
  17. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref]
  18. C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
    [Crossref]
  19. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [Crossref]
  20. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref]
  21. E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
    [Crossref]
  22. S. Longhi, “Optical analog of population trapping in the continuum: classical and quantum interference effects,” Phys. Rev. A 79, 023811 (2009).
    [Crossref]
  23. E. N. Bulgakov and D. N. Maksimov, “Topological bound states in the continuum in arrays of dielectric spheres,” Phys. Rev. Lett. 118, 267401 (2017).
    [Crossref]
  24. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
    [Crossref]
  25. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
    [Crossref]
  26. F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
    [Crossref]
  27. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
    [Crossref]
  28. H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
    [Crossref]
  29. E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
    [Crossref]
  30. K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
    [Crossref]
  31. D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
    [Crossref]
  32. J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
    [Crossref]
  33. Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42, 3093–3096 (2017).
    [Crossref]
  34. C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
    [Crossref]
  35. H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
    [Crossref]
  36. X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
    [Crossref]
  37. M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38, 144–148 (2013).
    [Crossref]

2019 (2)

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
[Crossref]

2018 (2)

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
[Crossref]

2017 (7)

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Topological bound states in the continuum in arrays of dielectric spheres,” Phys. Rev. Lett. 118, 267401 (2017).
[Crossref]

J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42, 3093–3096 (2017).
[Crossref]

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

2016 (5)

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
[Crossref]

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

2015 (3)

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

2014 (2)

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

2013 (4)

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38, 144–148 (2013).
[Crossref]

J.-X. Yan and H.-H. Fu, “Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system,” Phys. B 410, 197–200 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

2012 (2)

S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
[Crossref]

2011 (1)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

2009 (3)

S. Longhi, “Optical analog of population trapping in the continuum: classical and quantum interference effects,” Phys. Rev. A 79, 023811 (2009).
[Crossref]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[Crossref]

W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
[Crossref]

2008 (1)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

2007 (1)

C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion 45, 16–29 (2007).
[Crossref]

2006 (1)

M. L. Ladrón de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73, 205303 (2006).
[Crossref]

1992 (1)

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

1929 (1)

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 465–467 (1929).

Albo, A.

A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
[Crossref]

Alù, A.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Álvarez, C.

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

Artigas, D.

J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
[Crossref]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Bahir, G.

A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
[Crossref]

Bernier, N. R.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Bezus, E. A.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
[Crossref]

E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
[Crossref]

Bogdanov, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Bogdanov, A. A.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and D. N. Maksimov, “Topological bound states in the continuum in arrays of dielectric spheres,” Phys. Rev. Lett. 118, 267401 (2017).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
[Crossref]

Bykov, D. A.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
[Crossref]

E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
[Crossref]

Capasso, F.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Chan, C. T.

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

Chen, Y.

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

Cho, A. Y.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Chu, S.-N. G.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Cui, H.

Cui, J.-M.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

den Hollander, W.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Díaz, E.

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

Doeleman, H. M.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Domínguez-Adame, F.

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

Dong, C.-H.

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

Doskolovich, L. L.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
[Crossref]

E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
[Crossref]

Dragoman, D.

D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer Science & Business Media, 2013).

Dragoman, M.

D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer Science & Business Media, 2013).

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Faist, J.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Faraon, A.

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38, 144–148 (2013).
[Crossref]

Favraud, G.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Fekete, D.

A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
[Crossref]

Feofanov, A. K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Flayac, H.

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

Fratalocchi, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Fu, H.-H.

J.-X. Yan and H.-H. Fu, “Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system,” Phys. B 410, 197–200 (2013).
[Crossref]

Gomis-Bresco, J.

J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
[Crossref]

Gong, W.

W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
[Crossref]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Guo, G.-C.

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

Han, Y.

W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
[Crossref]

Han, Z.-F.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

Hein, S.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Javerzac-Galy, C.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Keil, R.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Kippenberg, T. J.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Kivshar, Y.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Kivshar, Y. S.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Koch, W.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Koenderink, A. F.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Koshelev, K.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Koshelev, K. L.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Ladrón de Guevara, M. L.

M. L. Ladrón de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73, 205303 (2006).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Limonov, M. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Linton, C. M.

C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion 45, 16–29 (2007).
[Crossref]

Loncar, M.

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38, 144–148 (2013).
[Crossref]

Longhi, S.

S. Longhi, “Optical analog of population trapping in the continuum: classical and quantum interference effects,” Phys. Rev. A 79, 023811 (2009).
[Crossref]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[Crossref]

Lu, L.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Lyapina, A. A.

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

Ma, G.

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

Maksimov, D. N.

E. N. Bulgakov and D. N. Maksimov, “Topological bound states in the continuum in arrays of dielectric spheres,” Phys. Rev. Lett. 118, 267401 (2017).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
[Crossref]

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

McIver, P.

C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion 45, 16–29 (2007).
[Crossref]

Miroshnichenko, A. E.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Monticone, F.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Nannen, L.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Nolte, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Orellana, P. A.

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

M. L. Ladrón de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73, 205303 (2006).
[Crossref]

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Pilipchuk, A. S.

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

Plekhanov, K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Rybin, M. V.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Sadreev, A. F.

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

Sadrieva, Z. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Samusev, K. B.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

Savona, V.

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Shen, Z.

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

Sirtori, C.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Sivco, D. L.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Sukhorukov, A. A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Sun, F.-W.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

Sun, X.

Szameit, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Tang, H. X.

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

Torner, L.

J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
[Crossref]

Toth, L. D.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Tünnermann, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

von Neumann, J.

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 465–467 (1929).

Wei, G.

W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
[Crossref]

Weimann, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Wigner, E.

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 465–467 (1929).

Xiao, Y.-X.

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

Xiong, X.

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

Xu, Y.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Yan, J.-X.

J.-X. Yan and H.-H. Fu, “Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system,” Phys. B 410, 197–200 (2013).
[Crossref]

Yu, Z.

Zhang, X.

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

Zhang, Z.-Q.

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Zhu, N.

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

Zou, C.-L.

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

Zou, X.-B.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

J. Fluid Mech. (2)

A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech. 780, 370–387 (2015).
[Crossref]

S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

W. Gong, Y. Han, and G. Wei, “Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures,” J. Phys. Condens. Matter 21, 175801 (2009).
[Crossref]

Laser Photonics Rev. (2)

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photonics Rev. 9, 114–119 (2015).
[Crossref]

MRS Bull. (1)

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38, 144–148 (2013).
[Crossref]

Nanophotonics (1)

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Nat. Photonics (2)

J. Gomis-Bresco, D. Artigas, and L. Torner, “Anisotropy-induced photonic bound states in the continuum,” Nat. Photonics 11, 232–236 (2017).
[Crossref]

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Nature (3)

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature 358, 565–567 (1992).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

New J. Phys. (1)

Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys. 18, 063031 (2016).
[Crossref]

Opt. Lett. (2)

Photonics Res. (1)

E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, “Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide,” Photonics Res. 6, 1084–1093 (2018).
[Crossref]

Phys. B (1)

J.-X. Yan and H.-H. Fu, “Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system,” Phys. B 410, 197–200 (2013).
[Crossref]

Phys. Lett. A (1)

C. Álvarez, F. Domínguez-Adame, P. A. Orellana, and E. Díaz, “Impact of electron-vibron interaction on the bound states in the continuum,” Phys. Lett. A 379, 1062–1066 (2015).
[Crossref]

Phys. Rev. A (4)

S. Longhi, “Optical analog of population trapping in the continuum: classical and quantum interference effects,” Phys. Rev. A 79, 023811 (2009).
[Crossref]

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99, 063805 (2019).
[Crossref]

Phys. Rev. B (2)

A. Albo, D. Fekete, and G. Bahir, “Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells,” Phys. Rev. B 85, 115307 (2012).
[Crossref]

M. L. Ladrón de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73, 205303 (2006).
[Crossref]

Phys. Rev. Lett. (9)

Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, “Topological subspace-induced bound state in the continuum,” Phys. Rev. Lett. 118, 166803 (2017).
[Crossref]

X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Topological bound states in the continuum in arrays of dielectric spheres,” Phys. Rev. Lett. 118, 267401 (2017).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Phys. Z. (1)

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 465–467 (1929).

Wave Motion (1)

C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion 45, 16–29 (2007).
[Crossref]

Other (1)

D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer Science & Business Media, 2013).

Supplementary Material (1)

NameDescription
» Supplement 1       supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. BIC-based photonic integrated circuit and its modal properties. (a) Conceptual illustration of the proposed photonic circuit with BICs. The bottom layer (gray) is silica substrate, the center layer (dark pink) is the single-crystal dielectric material ( LiNbO 3 ), and the top layer consists of patterned low-refractive-index organic polymer (purple) and metal (yellow). The metal is used as electrodes for modulating guided photons at high speeds. (b) Effective refractive index distributions for light propagating in the routing waveguides in (a) where the waveguide width w = 1.8 μm . (c) Dispersion diagram of the TM bound mode (blue surface) and the TE continuous modes (red surface). The intersecting line of the two surfaces represents phase matching of the TM bound mode and the TE continuous modes, where the former can be coupled with the latter and dissipate energy into the continuum. (d), (e) Electric field distributions of a TE continuous mode (d) and the TM bound mode (e) corresponding to the red and blue surfaces in (c), respectively. (f), (g) Log-scale plots of the cross-sectional E z profiles of a general non-BIC mode (f) and a special BIC mode (g), which correspond to the green dot and green triangle on the intersecting line of the two surfaces in (c).
Fig. 2.
Fig. 2. Theoretical and numerical results of BICs. (a) Illustration of a straight waveguide with BICs, where w denotes the width of the waveguide. (b) Propagation loss of the TM bound mode in the straight waveguide as a function of the waveguide width w and wavelength λ . The propagation loss approaches zero (black regions) for certain combinations of parameters where the BIC condition is satisfied. (c) Propagation loss as a function of the waveguide width w for light at the wavelength of 1.50, 1.55, and 1.60 μm. The inset plots propagation loss as a function of the wavelength λ with w = 1.8 and 3.6 μm. Due to the low structural dispersion, the propagation loss can maintain below 2 dB/cm over a large bandwidth from 1.40 to 1.65 μm. (d) Illustration of a bent waveguide, where w b and R b denote the width and radius of the bent waveguide, respectively. (e) Bending loss as a function of the waveguide width w b and radius R b . Similar to the straight waveguide, the bending loss approaches zero for certain combinations of parameters where the BIC condition is satisfied. (f) Intrinsic Q factor of microdisk cavities as a function of the disk radius R d . The Q factor approaches maxima that are limited only by the radiation loss for specific R d values where the BIC condition is satisfied.
Fig. 3.
Fig. 3. Experimental demonstration of BICs. (a) Straight waveguides with in/output grating couplers. Devices with different waveguide lengths and identical in/output grating couplers were fabricated on the same chip to extract the propagation loss of the waveguides. (b) Simulated and measured propagation loss of straight waveguides as a function of the waveguide width w . (c) Devices for measuring the bending loss in bent waveguides. The upper and lower devices have identical in/output grating couplers and the same length of straight waveguides, but different lengths of the bending sections. (d), (e) Simulated and measured bending loss as a function of the bend radius R b and waveguide width w b . (f) Microdisk cavity evanescently coupled with a bus waveguide. (g) Intrinsic Q factors of the cavity resonances as a function of the disk radius R d (blue solid line: simulated curve without consideration of loss; black dashed line: simulated curve with consideration of loss from material absorption and fabrication imperfection; red dots: measured data). (h) Measured transmission spectrum of a microring cavity whose geometric parameters satisfy the BIC condition for light at 1550 nm. Resonances of very high Q factors with high extinction are achieved over a large wavelength range. (i) Zoomed-in spectra of two typical resonances. The loaded and intrinsic Q factors are 2.2 × 10 5 and 5.8 × 10 5 , respectively, based on the Lorentzian fitting.
Fig. 4.
Fig. 4. Photonic devices based on BICs. (a) Optical microscope image of a directional coupler. (b) Normalized transmission spectra of the coupled and through ports of the directional coupler, which show high coupling efficiency and high extinction ratio in the wavelength range of 1450–1600 nm. (c), (d) Optical microscope image and the measured transmission spectrum of a Mach–Zehnder interferometer (MZI). (e) Optical microscope image of a MZI electro-optic modulator. The inset is a false-color SEM image zoomed in at the waveguide and the nearby electrodes. (f) Measured optical output power of the MZI electro-optic modulator for light at the wavelength of 1550 nm as a function of the applied DC voltage, indicating the V π of the modulator to be 16 V . (g) Temporal response of the MZI electro-optic modulator.

Metrics