Abstract

Modern optical imaging possesses a huge information capacity whose corresponding space-bandwidth product (SBP) reaches tens of megapixels. However, despite the advances in optical and electronic devices, the SBP of an optical microscope is greatly limited, resulting in a reduced field of view or resolution of an image. In this paper, we exploit the Kramers–Kronig relations in digital holography to achieve high SBP imaging, demonstrating a complex amplitude image that can surpass the SBP of a bright-field image. The capability of the proposed method is demonstrated by imaging static samples and biological tissues. We successfully measure a 4.2-megapixel complex amplitude image whose bright-field counterpart exhibits 16.7 megapixels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy

Hongda Wang, Zoltán Göröcs, Wei Luo, Yibo Zhang, Yair Rivenson, Laurent A. Bentolila, and Aydogan Ozcan
Optica 3(12) 1422-1429 (2016)

Quantitative space-bandwidth product analysis in digital holography

Daniel Claus, Daciana Iliescu, and Peter Bryanston-Cross
Appl. Opt. 50(34) H116-H127 (2011)

Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element

Gang Li, Jinsoo Jeong, Dukho Lee, Jiwoon Yeom, Changwon Jang, Seungjae Lee, and Byoungho Lee
Opt. Express 23(26) 33170-33183 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [Crossref]
  2. F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
    [Crossref]
  3. P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
    [Crossref]
  4. V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
    [Crossref]
  5. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  6. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22, 13586–13599 (2014).
    [Crossref]
  7. H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L. A. Bentolila, and A. Ozcan, “Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy,” Optica 3, 1422–1429 (2016).
    [Crossref]
  8. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref]
  9. J. R. Carson, “Method and means for signaling with high-frequency waves,” U.S. patent applicationUS1449382A (March27, 1923).
  10. G. T. Di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969).
    [Crossref]
  11. M. K. Kim, “Principles and techniques of digital holographic microscopy,” Proc. SPIE 1, 018005 (2010).
    [Crossref]
  12. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
    [Crossref]
  13. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
    [Crossref]
  14. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  15. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  16. A. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
    [Crossref]
  17. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  18. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
    [Crossref]
  19. T. Tahara, Y. Takahashi, and Y. Arai, “Image-quality improvement in space-bandwidth capacity-enhanced digital holography,” Opt. Eng. 53, 112313 (2014).
    [Crossref]
  20. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [Crossref]
  21. Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
    [Crossref]
  22. T. M. Kreis and W. P. O. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
    [Crossref]
  23. G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851–8856 (2007).
    [Crossref]
  24. N. Demoli, J. Mestrovic, and I. Sovic, “Subtraction digital holography,” Appl. Opt. 42, 798–804 (2003).
    [Crossref]
  25. J. Weng, J. Zhong, and C. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Opt. Express 16, 21971–21981 (2008).
    [Crossref]
  26. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [Crossref]
  27. K. Khare, P. T. Ali, and J. Joseph, “Single shot high resolution digital holography,” Opt. Express 21, 2581–2591 (2013).
    [Crossref]
  28. M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
    [Crossref]
  29. N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [Crossref]
  30. N. Pavillon, C. Arfire, I. Bergoend, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
    [Crossref]
  31. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
    [Crossref]
  32. E. Sanchez-Ortiga, A. Doblas, G. Saavedra, M. Martinez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
    [Crossref]
  33. R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–557 (1926).
    [Crossref]
  34. H. A. Kramers, “La diffusion de la lumière par les atomes,” in Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como. (1927), Vol. 2, pp. 545–557.
  35. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
    [Crossref]
  36. H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol. 14, 22–30 (1966).
    [Crossref]
  37. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, 1948), Vol. 2.
  38. M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
    [Crossref]
  39. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [Crossref]
  40. M. G. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24, 29033–29039 (2016).
    [Crossref]
  41. L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
    [Crossref]
  42. D. Kim, R. Magnusson, M. Jin, J. Lee, and W. Chegal, “Complex object wave direct extraction method in off-axis digital holography,” Opt. Express 21, 3658–3668 (2013).
    [Crossref]
  43. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004).
    [Crossref]
  44. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552 (2001).
    [Crossref]
  45. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [Crossref]
  46. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
    [Crossref]
  47. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  48. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref]
  49. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref]
  50. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630–3633 (2014).
    [Crossref]

2018 (1)

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

2016 (5)

H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L. A. Bentolila, and A. Ozcan, “Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy,” Optica 3, 1422–1429 (2016).
[Crossref]

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
[Crossref]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

M. G. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24, 29033–29039 (2016).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

2014 (4)

2013 (6)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

K. Khare, P. T. Ali, and J. Joseph, “Single shot high resolution digital holography,” Opt. Express 21, 2581–2591 (2013).
[Crossref]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

D. Kim, R. Magnusson, M. Jin, J. Lee, and W. Chegal, “Complex object wave direct extraction method in off-axis digital holography,” Opt. Express 21, 3658–3668 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

2009 (2)

2008 (2)

2007 (2)

2006 (2)

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

2005 (1)

2004 (4)

Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
[Crossref]

M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
[Crossref]

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
[Crossref]

Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004).
[Crossref]

2003 (2)

N. Demoli, J. Mestrovic, and I. Sovic, “Subtraction digital holography,” Appl. Opt. 42, 798–804 (2003).
[Crossref]

M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
[Crossref]

2001 (1)

1999 (2)

1997 (1)

T. M. Kreis and W. P. O. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[Crossref]

1996 (1)

1982 (1)

1969 (2)

G. T. Di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1966 (1)

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol. 14, 22–30 (1966).
[Crossref]

1965 (1)

1926 (1)

Abraham, V. C.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
[Crossref]

Ali, P. T.

Antonelli, C.

Arai, Y.

T. Tahara, Y. Takahashi, and Y. Arai, “Image-quality improvement in space-bandwidth capacity-enhanced digital holography,” Opt. Eng. 53, 112313 (2014).
[Crossref]

Arfire, C.

Bentolila, L. A.

Bergoend, I.

Bhaduri, B.

Bian, Z.

Bishara, W.

Blu, T.

M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
[Crossref]

M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Carson, J. R.

J. R. Carson, “Method and means for signaling with high-frequency waves,” U.S. patent applicationUS1449382A (March27, 1923).

Chang, C. C.

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Charriere, F.

Chegal, W.

Chen, G. L.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Collot, L.

Colomb, T.

Coskun, A. F.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Cuche, E.

Dasari, R. R.

Demoli, N.

Depeursinge, C.

Di Francia, G. T.

Doblas, A.

Dong, S.

Dorsch, R. G.

Emery, Y.

Evans, A.

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

Feld, M. S.

Feldman, M.

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

Ferreira, C.

Garcia-Sucerquia, J.

Ge, B. Z.

Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
[Crossref]

Ghaznavi, F.

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

Göröcs, Z.

Gross, M.

Guo, K.

Haskins, J. R.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
[Crossref]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Horstmeyer, R.

Hu, C.

Ikeda, T.

Ina, H.

Jeong, Y.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Jin, M.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Joseph, J.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Jung, J.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Juptner, W. P. O.

T. M. Kreis and W. P. O. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[Crossref]

Kandel, M. E.

Kawai, H.

Khare, K.

Kim, D.

Kim, K.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” Proc. SPIE 1, 018005 (2010).
[Crossref]

Kobayashi, S.

Kramers, H. A.

H. A. Kramers, “La diffusion de la lumière par les atomes,” in Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como. (1927), Vol. 2, pp. 545–557.

Kreis, T. M.

T. M. Kreis and W. P. O. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[Crossref]

Kronig, R. D. L.

Kuhn, J.

Kuo, M. K.

Lai, J.

Lang, P.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

Le Clerc, F.

Lee, E.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Lee, J.

Lee, K.

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630–3633 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Lee, M.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Lee, S.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Li, Z.

Liebling, M.

M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
[Crossref]

M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
[Crossref]

Lin, C. Y.

Liu, H.

Lohmann, A.

Lohmann, A. W.

Lu, Q. N.

Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
[Crossref]

Luo, W.

Madabhushi, A.

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Magnusson, R.

Majeed, H.

Marquet, P.

Martinez-Corral, M.

Mecozzi, A.

Mendlovic, D.

Mestrovic, J.

Mir, M.

Montfort, F.

Nastasa, V.

Nichols, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

Ohzu, H.

Osten, W.

Ou, X.

Ozcan, A.

Park, H.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Park, Y.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630–3633 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Pavillon, N.

Pedrini, G.

Pham, H.

Popescu, G.

Rinehart, M. T.

Rivenson, Y.

Saavedra, G.

Sanchez-Ortiga, E.

Scheer, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

Seelamantula, C. S.

Shaked, N. T.

Shan, M. G.

Shin, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

Shiradkar, R.

Shtaif, M.

Sovic, I.

Su, T. W.

Tahara, T.

T. Tahara, Y. Takahashi, and Y. Arai, “Image-quality improvement in space-bandwidth capacity-enhanced digital holography,” Opt. Eng. 53, 112313 (2014).
[Crossref]

Takahashi, Y.

T. Tahara, Y. Takahashi, and Y. Arai, “Image-quality improvement in space-bandwidth capacity-enhanced digital holography,” Opt. Eng. 53, 112313 (2014).
[Crossref]

Takaki, Y.

Takeda, M.

Taylor, D. L.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
[Crossref]

Titchmarsh, E. C.

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, 1948), Vol. 2.

Tiziani, H. J.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Unser, M.

Unser, M. A.

M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
[Crossref]

Voelcker, H.

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol. 14, 22–30 (1966).
[Crossref]

Wang, H.

Wang, S.

Wax, A.

Weng, J.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Xin, H.

Xue, L.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

Yeow, K.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

Yoon, J.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Yu, H.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Yuan, C.

Zalevsky, Z.

Zhai, H.

Zhang, Y.

Zhang, Y. M.

Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
[Crossref]

Zheng, G.

Zhong, J.

Zhu, Y.

Annu. Rev. Pathol. (1)

F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging in pathology: whole-slide imaging and beyond,” Annu. Rev. Pathol. 8, 331–359 (2013).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (1)

IEEE Trans. Commun. Technol. (1)

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol. 14, 22–30 (1966).
[Crossref]

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Nat. Photonics (3)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

Nat. Rev. Drug. Discov. (1)

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug. Discov. 5, 343–356 (2006).
[Crossref]

Opt. Commun. (2)

Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Eng. (2)

T. M. Kreis and W. P. O. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[Crossref]

T. Tahara, Y. Takahashi, and Y. Arai, “Image-quality improvement in space-bandwidth capacity-enhanced digital holography,” Opt. Eng. 53, 112313 (2014).
[Crossref]

Opt. Express (10)

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Opt. Express 16, 21971–21981 (2008).
[Crossref]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]

J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851–8856 (2007).
[Crossref]

M. G. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24, 29033–29039 (2016).
[Crossref]

K. Khare, P. T. Ali, and J. Joseph, “Single shot high resolution digital holography,” Opt. Express 21, 2581–2591 (2013).
[Crossref]

D. Kim, R. Magnusson, M. Jin, J. Lee, and W. Chegal, “Complex object wave direct extraction method in off-axis digital holography,” Opt. Express 21, 3658–3668 (2013).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

N. Pavillon, C. Arfire, I. Bergoend, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22, 13586–13599 (2014).
[Crossref]

Opt. Lett. (7)

Optica (2)

Proc. SPIE (2)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” Proc. SPIE 1, 018005 (2010).
[Crossref]

M. Liebling, T. Blu, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–560 (2003).
[Crossref]

Sci. Rep. (1)

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[Crossref]

Sensors (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref]

Trends Biotechnol. (1)

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22, 15–22 (2004).
[Crossref]

Other (3)

J. R. Carson, “Method and means for signaling with high-frequency waves,” U.S. patent applicationUS1449382A (March27, 1923).

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, 1948), Vol. 2.

H. A. Kramers, “La diffusion de la lumière par les atomes,” in Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como. (1927), Vol. 2, pp. 545–557.

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental demonstration with a spectral overlap. (a)–(d). Experimental results using the proposed method showing a USAF 1951 resolution target (a) and (b), and a 10-μm-diameter polystyrene bead (c) and (d). (e)–(h) Experimental results using a conventional off-axis method showing the resolution target (e) and (f), and the polystyrene bead (g) and (h). (i) Interferogram in the experimental condition. (j) Fourier transform of (i). (Insets) Line profiles of (d) and (h). The red dashed lines correspond to a phase value of 2.73 rad. Scale bars indicate 10 μm.
Fig. 2.
Fig. 2. Experimental demonstration without a spectral overlap. (a)–(d) Experimental results using the proposed method showing a 1951 USAF resolution target (a) and (b), and a 10-μm-diameter polystyrene bead (c) and (d). (e)–(h) Experimental results using a conventional off-axis method showing the resolution target (e) and (f), and the polystyrene bead (g and h). (i) Interferogram in the experimental condition. (j) Fourier transform of (i). (Insets) Line profiles of (d) and (h). The red dashed lines correspond to a phase value of 2.73 rad. Scale bars indicate 10 μm.
Fig. 3.
Fig. 3. Experimental demonstration of wide field of view quantitative phase imaging. (a) Measured quantitative phase image of breast tissue with the proposed method. Insets show magnified images at different positions. (b) Fourier spectrum of an interferogram.
Fig. 4.
Fig. 4. Experimental demonstration with anamorphic imaging. (a) Quantitative phase image of mouse brain tissue retrieved using the proposed method. (b) Corrected image of (a), where the multiple reflections induced by coverslips are removed (indicated with white arrows). (c) Fourier spectrum of an interferogram.
Fig. 5.
Fig. 5. SBP per measurements and pixel count of detectors achieved in different works. Solid and dashed lines indicate the maximum achievable SBP per measurements of complex amplitude and intensity images, respectively, in different imaging techniques. The proposed method achieves a 4.2-megapixel complex amplitude image with a 12-megapixel detector (red circle, data shown in Fig. 4). The bright-field counterpart of the measured complex amplitude image has an SBP of 16.7 megapixels (dashed red circle). Achieved SBP per measurements and pixel count of detectors in the literatures (Refs. [5,7,8]) are denoted with colored circles.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ˜ ( ν ) = A ˜ ( ν ) + B ˜ ( ν ν R ) + B ˜ * ( ν ν R ) ,
P ˜ ( ν ) = { 1 , | ν | NA obj / λ M 0 , | ν | > NA obj / λ M .
| ν R | > 3 NA obj λ M .
Re [ f ( ω ) ] = 1 π p.v. Im [ f ( ω ) ] ω ω d ω ,
Im [ f ( ω ) ] = 1 π p.v. Re [ f ( ω ) ] ω ω d ω ,
Re [ χ ( r ) ] = log | 1 + β ( r ) | = 1 2 [ log I ( r ) log | R ( r ) | 2 ] ,
Im [ χ ( r ) ] = arg [ 1 + β ( r ) ] .
χ ( r ) = n = 0 1 n n + 1 [ β ( r ) ] n + 1 ,
β ( r ) = 1 R 0 S ˜ ( ν , r ) exp [ i 2 π ( ν + | ν R | ) r ] d ν ,
| ν R | > NA obj λ M .

Metrics