Abstract

On-chip optical waveguides with low propagation losses and precisely engineered group velocity dispersion are important to nonlinear photonic devices such as soliton microcombs, and likewise can be employed for on-chip gyroscopes, delay lines, or Brillouin lasers. Yet, despite intensive research efforts, nonlinear integrated photonic platforms still feature propagation losses orders of magnitude higher than in standard optical fiber. The tight confinement and high index contrast of integrated waveguides make them highly susceptible to fabrication-induced surface roughness, causing dominant scattering losses. Therefore, microresonators with ultra-high-Q-factors are, to date, attainable only in polished bulk crystalline or chemically etched silica-based devices, which pose, however, challenges for full photonic integration. Here, we demonstrate the fabrication of silicon nitride (Si3N4) waveguides with unprecedentedly smooth sidewalls and tight confinement with record-low propagation losses. This is achieved by combining the photonic Damascene process with a novel reflow process, which reduces etching roughness, while sufficiently preserving dimensional accuracy. This leads to previously unattainable mean scattering Q-factors of 12×106 for tightly confining waveguides with anomalous dispersion. Via systematic process step variation and two independent characterization techniques, we differentiate the scattering and absorption loss contributions and reveal metal-impurity-related absorption to be an important loss origin. Although such impurities are known to limit optical fibers, this is the first time, to the best of our knowledge, they are identified—and play a tangible role—in absorption of integrated microresonators. Taken together, our work provides new insights into the origins of propagation losses in Si3N4 waveguides and provides the technological basis for integrated nonlinear photonics in the ultra-high-Q regime.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics

Martin H. P. Pfeiffer, Arne Kordts, Victor Brasch, Michael Zervas, Michael Geiselmann, John D. Jost, and Tobias J. Kippenberg
Optica 3(1) 20-25 (2016)

Ultralow-power chip-based soliton microcombs for photonic integration

Junqiu Liu, Arslan S. Raja, Maxim Karpov, Bahareh Ghadiani, Martin H. P. Pfeiffer, Botao Du, Nils J. Engelsen, Hairun Guo, Michael Zervas, and Tobias J. Kippenberg
Optica 5(10) 1347-1353 (2018)

Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, and Víctor Torres-Company
Opt. Express 23(20) 25827-25837 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
    [Crossref]
  2. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref]
  3. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
    [Crossref]
  4. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  6. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  7. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  8. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  9. J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
    [Crossref]
  10. V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
    [Crossref]
  11. T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).
  12. M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  13. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
    [Crossref]
  14. M.-G. Suh and K. Vahala, “Soliton microcomb range measurement,” arXiv: 1705.06697 (2017), pp. 2–7.
  15. P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.
  16. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
    [Crossref]
  17. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.
  18. M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.
  19. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.
  20. K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
    [Crossref]
  21. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  22. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  23. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
    [Crossref]
  24. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
    [Crossref]
  25. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.
  26. A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightwave Technol. 35, 639–649 (2017).
    [Crossref]
  27. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987).
    [Crossref]
  28. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  29. R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.
  30. P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
    [Crossref]
  31. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
    [Crossref]
  32. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
    [Crossref]
  33. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
    [Crossref]
  34. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  35. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  36. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref]
  37. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
    [Crossref]
  38. C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.
  39. M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
    [Crossref]
  40. M. I. Ojovan, “Configurons: thermodynamic parameters and symmetry changes at glass transition,” Entropy 10, 334–364 (2008).
    [Crossref]
  41. C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
    [Crossref]
  42. S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.
  43. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]
  44. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [Crossref]
  45. J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
    [Crossref]
  46. A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
    [Crossref]
  47. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
    [Crossref]
  48. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [Crossref]
  49. T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
    [Crossref]
  50. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  51. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
    [Crossref]
  52. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
    [Crossref]
  53. J. G. Zhu, S. K. Ozdemir, L. N. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).
    [Crossref]
  54. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  55. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  56. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
    [Crossref]
  57. P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57, 309–313 (1974).
    [Crossref]
  58. K. Graff, Metal Impurities in Silicon-Device Fabrication (Springer, 2000).
  59. D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061–4063 (2004).
    [Crossref]
  60. G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
    [Crossref]
  61. W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
    [Crossref]
  62. G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
    [Crossref]
  63. Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
    [Crossref]

2017 (6)

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightwave Technol. 35, 639–649 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

2016 (6)

2015 (3)

2014 (3)

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

2013 (4)

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

2012 (2)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

2008 (2)

M. I. Ojovan, “Configurons: thermodynamic parameters and symmetry changes at glass transition,” Entropy 10, 334–364 (2008).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (1)

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

2005 (1)

2004 (6)

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061–4063 (2004).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

2003 (2)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

2000 (3)

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

1996 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

1987 (1)

1986 (1)

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

1981 (1)

Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
[Crossref]

1974 (1)

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57, 309–313 (1974).
[Crossref]

1973 (1)

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

1966 (1)

K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
[Crossref]

Abeles, J. H.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Adesida, I.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Adibi, A.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

Agarwal, A. M.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Al Noman, A.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Arnauts, S.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Bae, J. W.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Baets, R.

Barbosa, F. A. S.

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Barton, J. S.

Bauters, J. F.

Beichman, C.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Belt, M.

Beyeler, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Bienstman, P.

Billat, A.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Blumenthal, D. J.

Bogaerts, W.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Bona, G. L.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Borselli, M.

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Bouchy, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Bovington, J.

Bowers, J. E.

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Bres, C.-S.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Briles, T. C.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Bruinink, C. M.

Bryant, A.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

Cardenas, J.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

Carmon, T.

Cecconi, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Chang, L.

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Chazelas, B.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Chu, S. T.

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Clemmen, S.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Dave, U.

De Heyn, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Dhakal, A.

Dhoore, S.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Doppmann, G.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Drake, T. E.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Dutt, A.

Eftekhar, A. A.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

Eggeling, M.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Fan, L.

Fitzgerald, M. P.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Frederick, C.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Freude, W.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Gaeta, A. L.

Ganin, D.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Geerligs, L. J.

D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061–4063 (2004).
[Crossref]

Geiselmann, M.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Germann, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Ghedina, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Graff, K.

K. Graff, Metal Impurities in Silicon-Device Fabrication (Springer, 2000).

Grassani, D.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Grudinin, I. S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Guo, H.

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Hainberger, R.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Han, K.

Harrison, W. W.

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

Harutyunyan, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

He, L. N.

Heck, M. J. R.

Heideman, R. G.

Helin, P.

Henry, C. H.

Herkommer, C.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Hermans, A.

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Hess, K. R.

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

Heyns, M. M.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Hockham, G.

K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Horst, F.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Illic, B. R.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Jang, J. H.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Jaramillo-Villegas, J. A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Ji, X.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

John, D. D.

Johnson, A. R.

Johnson, T.

Joshi, C.

Jost, J. D.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kalkman, J.

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

Kanamori, T.

Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
[Crossref]

Kao, K.

K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
[Crossref]

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Katz, L. E.

Kazarinov, R. F.

Keller, U.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Kim, S.

Kimerling, L.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

King, F. L.

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

Kippenberg, T. J.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Klenner, A.

Komljenovic, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Koos, C.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Koppitsch, G.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Kraft, J.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Krockenberger, J.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Kundermann, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Kuyken, B.

Kwakernaak, M.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Lai, Y.-H.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Lamb, E. S.

Lamont, M. R. E.

Le Thomas, N.

Leaird, D. E.

Lecaplain, C.

Lecomte, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Lee, H. J.

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Lee, Y. J.

Leifer, S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Leinse, A.

Lepore, A.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Li, A.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Li, Q.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Li, Y.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Lin, P. T.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Lipson, M.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

Little, B. E.

Liu, J.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

Liu, Y.

Lucas, E.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

Luke, K.

Macdonald, D.

D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061–4063 (2004).
[Crossref]

Maese-Novo, A.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

Manganelli, C. L.

Marcus, R. K.

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Martin, E. C.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Massarek, I.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Mawet, D.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Mayer, A. S.

Meinhardt, G.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Melnik, E.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Member, S.

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Metcalf, A. J.

Mitachi, S.

Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
[Crossref]

Molinari, E.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moreira, R.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Muellner, P.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Muneeb, M.

Mutinati, G. C.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Newbury, N. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Newns, G. R.

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Niu, B.

Norberg, E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Obrzud, E.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Offrein, B. J.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Oh, D. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

Ohishi, Y.

Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
[Crossref]

Ojovan, M. I.

M. I. Ojovan, “Configurons: thermodynamic parameters and symmetry changes at glass transition,” Entropy 10, 334–364 (2008).
[Crossref]

Okawachi, Y.

Orlowsky, K. J.

Ozdemir, S. K.

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Pantelis, P.

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Papp, S. B.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Pepe, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Peters, J. D.

Pfeiffer, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

Pfeiffer, M. H. P.

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Plante, W.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Polman, A.

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Pryamikov, A. D.

Qi, M.

Rahim, A.

Rainer, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Randel, S.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Raza, A.

Roberts, S. P.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–623 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

Roelkens, G.

Rokhsari, H.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

Rommel, S. L.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Rottenberg, X.

Ryckeboer, E.

Salemink, H. W. M.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

Schaekers, M.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schrank, F.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Schultz, P. C.

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57, 309–313 (1974).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Selvanathan, D.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Severi, S.

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Singh, V.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Spencer, D. T.

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Spillane, S. M.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Stanton, E. J.

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Stone, J. R.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Subramanian, A. Z.

Suh, M.-G.

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

M.-G. Suh and K. Vahala, “Soliton microcomb range measurement,” arXiv: 1705.06697 (2017), pp. 2–7.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Tchebotareva, A.

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

Teng, M.

Theogarajan, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Uffen, R. W. J.

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Vahala, K.

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

M.-G. Suh and K. Vahala, “Soliton microcomb range measurement,” arXiv: 1705.06697 (2017), pp. 2–7.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Vahala, K. J.

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Van Thourhout, D.

Van Vaerenbergh, T.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Varghese, L. T.

Vasisht, G.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Vereecke, G.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Verstraete, K.

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Vogelbacher, F.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

Volet, N.

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Wang, C.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Wang, J.

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

Wang, P.-H.

Weimann, C.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Weiner, A. M.

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Westly, D. A.

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

Wildi, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wilson, J. L.

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Wise, F. W.

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

Worthington, R.

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Xia, Z.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

Xuan, Y.

Xue, X.

Yang, K.

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

Yang, L.

Yang, Q.

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Yang, Q.-F.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

Yi, X.

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Zervas, M.

Zhang, C.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

Zhao, W.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

Zhu, J. G.

Anal. Chem. (1)

W. W. Harrison, K. R. Hess, R. K. Marcus, and F. L. King, “Glow discharge mass spectrometry,” Anal. Chem. 58, 341–356 (1986).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061–4063 (2004).
[Crossref]

Entropy (1)

M. I. Ojovan, “Configurons: thermodynamic parameters and symmetry changes at glass transition,” Entropy 10, 334–364 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Poulton, C. Koos, M. Fujii, S. Member, A. Pfrang, and T. Schimmel, “Radiation modes and roughness loss in high index-constrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

J. Am. Ceram. Soc. (1)

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57, 309–313 (1974).
[Crossref]

J. Electrochem. Soc. (2)

G. Vereecke, M. Schaekers, K. Verstraete, S. Arnauts, M. M. Heyns, and W. Plante, “Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach,” J. Electrochem. Soc. 147, 1499–1501 (2000).
[Crossref]

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–2241 (2000).
[Crossref]

J. Eur. Opt. Soc. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Ohishi, S. Mitachi, and T. Kanamori, “Impurity absorption losses in the infrared region due to 3D transition elements in fluoride glass,” Jpn. J. Appl. Phys. 20, L787–L788 (1981).
[Crossref]

Laser Photon. Rev. (1)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Light Sci. Appl. (1)

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” Light Sci. Appl. 6, e16202 (2017).
[Crossref]

Nat. Commun. (2)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Nat. Photonics (3)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Nature (2)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Optica (5)

Opto-electronics (1)

G. R. Newns, P. Pantelis, J. L. Wilson, R. W. J. Uffen, and R. Worthington, “Absorption losses in glasses and glass fibre waveguides,” Opto-electronics 5, 289–296 (1973).
[Crossref]

Phys. Rev. A (2)

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 1–4 (2004).
[Crossref]

Phys. Rev. Appl. (1)

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 1–9 (2017).
[Crossref]

Phys. Rev. Lett. (2)

T. J. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103, 027406 (2009).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Proc. Inst. Electr. Eng. (1)

K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
[Crossref]

Science (4)

M.-G. Suh, Q. Yang, K. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Other (11)

T. C. Briles, J. R. Stone, T. E. Drake, D. T. Spencer, C. Frederick, Q. Li, D. A. Westly, B. R. Illic, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization,” arXiv: 1711.06251 (2017).

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” arXiv: 1712.09526 (2017), pp. 1–7.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” arXiv: 1801.05174 (2018), pp. 1–7.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An integrated-photonics optical-frequency synthesizer,” arXiv preprint: 1708.05228 (2017), pp. 27–29.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Bridging ultra-high-Q devices and photonic circuits,” arXiv: 1702.05076 (2017), pp. 1–8.

M.-G. Suh and K. Vahala, “Soliton microcomb range measurement,” arXiv: 1705.06697 (2017), pp. 2–7.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv: 1707.05969 (2017), pp. 1–9.

C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, and T. J. Kippenberg, “Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides,” arXiv: 1704.02478 (2017), pp. 1–9.

R. Hainberger, P. Muellner, E. Melnik, G. C. Mutinati, M. Eggeling, A. Maese-Novo, F. Vogelbacher, J. Kraft, G. Koppitsch, G. Meinhardt, and F. Schrank, “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (2016), p. 781.

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in Si3N4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 5–6.

K. Graff, Metal Impurities in Silicon-Device Fabrication (Springer, 2000).

Supplementary Material (1)

NameDescription
» Supplement 1       Document containing supplementary information to the manuscript

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Nonlinear waveguide platforms and photonic Damascene process with reflow step. (a) Overview of nonlinear coefficients γ and attenuation α for different nonlinear waveguide platforms. Dashed lines indicate similar nonlinear performance based on a constant ratio of γ / α . (b) Schematic process flow of the photonic Damascene process highlighting the newly introduced preform reflow step, which consists of heating the substrate for sufficient time above its glass transition temperature. (c), (d) Final waveguide cross section from photonic Damascene process without and with reflow step. Rounding of the waveguide corners and an increased sidewall angle of 8° are observed after reflow.
Fig. 2.
Fig. 2. Systematic process comparison and resonance doublet analysis for 100 GHz FSR microresonators. (a) Resonance doublet with asymmetric linewidths fitted to extract the doublet asymmetry rate δ κ / 2 π and the resonance splitting γ / 2 π , in addition to the intrinsic linewidth κ 0 / 2 π . (b) Histogram showing the occurrence of κ 0 / 2 π values within 5 MHz bins for the quasi-TM mode of a 2 μm wide microresonator from wafer 3. The distribution is fitted using a Burr distribution (red) to extract the most probable linewidth value (red arrow). (c) Comparison of microresonator loss performance upon systematic variation of process parameters. (d) Comparison of intrinsic loss rates for quasi-TE and -TM modes for microresonators with different widths, fabricated with and without reflow process. Improvements through the reflow process are visible for tightly confining waveguides with widths of 1.5 μm and smaller. (e)–(h) Resonance doublet characteristics for 1.5 μm wide microresonators from different wafers. The mean coupling rate γ / 2 π and mean doublet asymmetry rate δ κ / 2 π are plotted for quasi-TM (e), (g) and quasi-TE (f), (h) polarized fundamental modes. Triangles indicate mean values based on less than three values. Linear correlations between the mean intrinsic loss rate and splitting or asymmetry rates are shown as dashed lines. The expected mean intrinsic loss rate for vanishing scattering is indicated.
Fig. 3.
Fig. 3. Determination of the absorption loss rate κ abs via thermal bistability spectroscopy of 100-GHz FSR microresonators with 1.5 μm wide waveguides. (a) Measurement and fit of a skewed resonance lineshape due to the transient heating-induced bistability. (b) Linear correlation of extracted resonance drags for different dropped powers revealing the resonance’s thermal susceptibility. (c) Measured thermal susceptibilities of many resonances of a 100 GHz FSR microresonator from wafer 3. A moving average of the obtained values is superimposed in yellow. The estimated limits of the thermal susceptiblity in the case of complete absorption of the dropped power are shown as dashed lines. The inset shows an example of the simulated heat distribution for a uniformly heated waveguide core. (d) Measured intrinsic linewidths κ 0 / 2 π and their moving average in yellow, corresponding to the thermal susceptibilities shown in (c). The estimated absorption rate limits are shown in red. The positions of modal crossings leading to local deviations of the resonance properties are indicated in gray. (e), (f) Intrinsic loss rates measured for uncladded devices fabricated with and without 15 s BHF dip, as well as the estimated lower limit of their absorption loss rates. The expected spectral position of hydrogen-related overtone absorptions are shown in gray.
Fig. 4.
Fig. 4. Concentration profile of common transition metal impurities in fully SiO 2 -cladded Si 3 N 4 sample. Secondary ion mass spectroscopy (SIMS) allows to locally probe the metal concentration profile, as shown in the inset. The matrix raw ion counts of Si and N indicate the material layer composed of the top (LTO) and bottom (wet thermal oxide) cladding layers and the LPCVD Si 3 N 4 in between (gray background). The profiling is performed for copper, iron, and chromium impurities, out of which the detected signal levels of iron and chromium are below the detection limit. A copper concentration of 10 18    atoms / cm 3 is measured within the Si 3 N 4 layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d a m d t = ( i Δ ω + κ 2 ) a m + i κ c 2 a m + δ m , C W κ ex s in

Metrics