Abstract

Photoacoustic imaging techniques have been extensively developed for biomedical applications, including functional and molecular imaging, due in part to their high optical contrast, high spatial resolution, and non-ionizing imaging properties. However, there are currently depth limitations in cellular-resolution, optically focused photoacoustic microscopy systems. In addition, most common photoacoustic systems need to be in contact with the sample through an ultrasound medium. In this work, by taking advantage of large photoacoustic initial pressures, all-optical non-contact optical resolution photoacoustic imaging is reported at depths beyond the optical transport mean-free path of the excitation wavelength. The proposed technique is called deep photoacoustic remote sensing (dPARS) microscopy. Visible pulsed excitation wavelengths are used to produce large initial-pressure-induced refractive index modulations in absorbing targets. These localized pressure rises create transient variations to the local scattering properties, which are detected as back-reflected intensity modulations from a deep-penetrating interrogation beam and do not require an interferometric detection pathway. Experiments demonstrate that dPARS is capable of providing optical resolution images to depths of 2.5 mm in tissue-mimicking scattering media. Signal-to-noise ratio 50  dB is reported for in vivo imaging of microvascular networks. Also, imaging of single red blood cells, oxygen saturation mapping, and deep-vascular imaging applications are demonstrated. dPARS’s capabilities such as remote sensing, deep optical resolution imaging, and high signal-to-noise ratio, may yield new opportunities for several pre-clinical and clinical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Non-contact photoacoustic tomography and ultrasonography for tissue imaging

Guy Rousseau, Alain Blouin, and Jean-Pierre Monchalin
Biomed. Opt. Express 3(1) 16-25 (2012)

Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

Armin Hochreiner, Johannes Bauer-Marschallinger, Peter Burgholzer, Bernhard Jakoby, and Thomas Berer
Biomed. Opt. Express 4(11) 2322-2331 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
    [Crossref]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
    [Crossref]
  3. L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
    [Crossref]
  4. J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
    [Crossref]
  5. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
    [Crossref]
  6. J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
    [Crossref]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
    [Crossref]
  8. R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4, 5329 (2014).
    [Crossref]
  9. D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
    [Crossref]
  10. E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
    [Crossref]
  11. J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
    [Crossref]
  12. P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19, 20097–20102 (2011).
    [Crossref]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
    [Crossref]
  14. P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36, 4107–4109 (2011).
    [Crossref]
  15. P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10, 055603 (2013).
    [Crossref]
  16. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
    [Crossref]
  17. P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40, 1350–1353 (2015).
    [Crossref]
  18. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36, 3975–3977 (2011).
    [Crossref]
  19. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4, 2322–2331 (2013).
    [Crossref]
  20. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3, 16–25 (2012).
    [Crossref]
  21. G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
    [Crossref]
  22. Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
    [Crossref]
  23. R. Nuster, P. Slezak, and G. Paltauf, “High resolution three-dimensional photoacoustic tomography with CCD-camera based ultrasound detection,” Biomed. Opt. Express 5, 2635–2647 (2014).
    [Crossref]
  24. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352–3358 (2007).
    [Crossref]
  25. T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35, 4151–4153 (2010).
    [Crossref]
  26. S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12, 064001 (2007).
    [Crossref]
  27. P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
    [Crossref]
  28. K. Bell, P. Hajireza, P. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56, 5172–5181 (2017).
    [Crossref]
  29. K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43, 146–149 (2018).
    [Crossref]
  30. J. Yao, “When pressure meets light: detecting the photoacoustic effect at the origin,” Light Sci. Appl. 6, e17062 (2017).
    [Crossref]
  31. P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38, 2711–2713 (2013).
    [Crossref]
  32. P. Hajireza, A. Forbrich, and R. Zemp, “In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomed. Opt. Express 5, 539–546 (2014).
    [Crossref]
  33. P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 5192–5195 (2014).
    [Crossref]
  34. S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
    [Crossref]
  35. J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
    [Crossref]
  36. K. L. Bell, P. Hajireza, and R. Zemp, “Coherence-gated photoacoustic remote sensing microscopy (Conference Presentation),” Proc. SPIE 10494, 1049422 (2018).
    [Crossref]
  37. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
    [Crossref]
  38. B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40, 910–913 (2015).
    [Crossref]
  39. Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
    [Crossref]
  40. L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
    [Crossref]
  41. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.
  42. Laser Institute of America, “American National Standard for Safe Use of Lasers,” (2007).

2018 (3)

K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43, 146–149 (2018).
[Crossref]

K. L. Bell, P. Hajireza, and R. Zemp, “Coherence-gated photoacoustic remote sensing microscopy (Conference Presentation),” Proc. SPIE 10494, 1049422 (2018).
[Crossref]

L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
[Crossref]

2017 (3)

J. Yao, “When pressure meets light: detecting the photoacoustic effect at the origin,” Light Sci. Appl. 6, e17062 (2017).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

K. Bell, P. Hajireza, P. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56, 5172–5181 (2017).
[Crossref]

2016 (3)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

2015 (5)

B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40, 910–913 (2015).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40, 1350–1353 (2015).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

2014 (7)

2013 (4)

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10, 055603 (2013).
[Crossref]

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4, 2322–2331 (2013).
[Crossref]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38, 2711–2713 (2013).
[Crossref]

2012 (3)

G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3, 16–25 (2012).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

2011 (5)

2010 (1)

2009 (2)

S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
[Crossref]

2008 (1)

2007 (2)

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12, 064001 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352–3358 (2007).
[Crossref]

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Backman, V.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Bauer-Marschallinger, J.

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
[Crossref]

Bell, K.

K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43, 146–149 (2018).
[Crossref]

L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

K. Bell, P. Hajireza, P. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56, 5172–5181 (2017).
[Crossref]

Bell, K. L.

K. L. Bell, P. Hajireza, and R. Zemp, “Coherence-gated photoacoustic remote sensing microscopy (Conference Presentation),” Proc. SPIE 10494, 1049422 (2018).
[Crossref]

Berer, T.

Blouin, A.

G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3, 16–25 (2012).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

Brett, M.

Burgholzer, P.

Cai, S.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Cao, R.

Carp, S. A.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12, 064001 (2007).
[Crossref]

Chen, R.

Chen, S.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Chen, Z.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

Dixon, A. J.

Favazza, C.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Fawzi, A. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Forbrich, A.

Frangi, A. F.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.

Gao, L.

L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

Gauthier, B.

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

Hai, P.

Hajireza, P.

K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43, 146–149 (2018).
[Crossref]

K. L. Bell, P. Hajireza, and R. Zemp, “Coherence-gated photoacoustic remote sensing microscopy (Conference Presentation),” Proc. SPIE 10494, 1049422 (2018).
[Crossref]

K. Bell, P. Hajireza, P. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56, 5172–5181 (2017).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40, 1350–1353 (2015).
[Crossref]

P. Hajireza, A. Forbrich, and R. Zemp, “In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomed. Opt. Express 5, 539–546 (2014).
[Crossref]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38, 2711–2713 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10, 055603 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36, 4107–4109 (2011).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19, 20097–20102 (2011).
[Crossref]

Haltmeier, M.

He, Y.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

Heinmiller, A.

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4, 5329 (2014).
[Crossref]

Hochreiner, A.

Hossack, J. A.

Hu, S.

Huang, C.-H.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Huang, L.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
[Crossref]

Jakoby, B.

Jiang, H.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
[Crossref]

Jiang, M. S.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
[Crossref]

Kaberniuk, A. A.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Kennedy, M. J.

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
[Crossref]

Li, C.

Li, G.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Li, L.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

Linsenmeier, R. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Liu, W.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Maslov, K.

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 5192–5195 (2014).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[Crossref]

Monchalin, J.-P.

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3, 16–25 (2012).
[Crossref]

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
[Crossref]

Niessen, W. J.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.

Ning, B.

Nuster, R.

Paltauf, G.

Paproski, R.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Paproski, R. J.

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4, 5329 (2014).
[Crossref]

Reza, P.

L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
[Crossref]

Rousseau, G.

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3, 16–25 (2012).
[Crossref]

Shcherbakova, D. M.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Sheibani, N.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Shi, J.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

Shi, P.

Shi, W.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10, 055603 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36, 4107–4109 (2011).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19, 20097–20102 (2011).
[Crossref]

Shung, K.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Shung, K. K.

Slezak, P.

Snider, L.

L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
[Crossref]

Soetikno, B. T.

Sorenson, C. M.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Sorge, J.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
[Crossref]

Sun, N.

Tsytsarev, V.

S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[Crossref]

Venugopalan, V.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12, 064001 (2007).
[Crossref]

Verkhusha, V. V.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Viergever, M. A.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.

Vincken, K. L.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.

Wachowicz, K.

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4, 5329 (2014).
[Crossref]

Wang, L.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Wang, L. V.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 5192–5195 (2014).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
[Crossref]

S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Wang, R. K.

Wang, Y.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36, 3975–3977 (2011).
[Crossref]

Wong, T. T.

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wu, D.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
[Crossref]

Xing, D.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

Yang, J.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Yang, J. M. K.

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Yang, S.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

Yao, J.

J. Yao, “When pressure meets light: detecting the photoacoustic effect at the origin,” Light Sci. Appl. 6, e17062 (2017).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 5192–5195 (2014).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Yeh, C.

Yi, J.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

Zamiri, S.

Zemp, R.

Zemp, R. J.

Zhang, H. F.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Zhang, R.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

Zhou, Q.

Zhou, Y.

Zou, J.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

Zuo, J.

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).
[Crossref]

Biomed. Opt. Express (4)

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 137–151 (2016).
[Crossref]

Int. J. Mol. Sci. (1)

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15, 23616–23639 (2014).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
[Crossref]

J. Biomed. Opt. (3)

S. Hu, K. I. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17, 061217 (2012).
[Crossref]

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12, 064001 (2007).
[Crossref]

Laser Phys. Lett. (1)

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10, 055603 (2013).
[Crossref]

Light Sci. Appl. (3)

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4, e334 (2015).
[Crossref]

J. Yao, “When pressure meets light: detecting the photoacoustic effect at the origin,” Light Sci. Appl. 6, e17062 (2017).
[Crossref]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref]

Nat. Med. (1)

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18, 1297–1302 (2012).
[Crossref]

Nat. Methods (2)

J. Yao, L. Wang, J. M. K. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zuo, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (11)

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36, 4107–4109 (2011).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40, 1350–1353 (2015).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36, 3975–3977 (2011).
[Crossref]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38, 2711–2713 (2013).
[Crossref]

K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43, 146–149 (2018).
[Crossref]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 5192–5195 (2014).
[Crossref]

T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35, 4151–4153 (2010).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40, 910–913 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).
[Crossref]

Proc. SPIE (2)

K. L. Bell, P. Hajireza, and R. Zemp, “Coherence-gated photoacoustic remote sensing microscopy (Conference Presentation),” Proc. SPIE 10494, 1049422 (2018).
[Crossref]

L. Snider, K. Bell, P. Reza, and R. J. Zemp, “Toward wide-field high-speed photoacoustic remote sensing microscopy,” Proc. SPIE 10494, 1049423 (2018).
[Crossref]

Sci. Rep. (2)

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6, 39616 (2016).
[Crossref]

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4, 5329 (2014).
[Crossref]

Other (2)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Medical Image Computing and Computer-Assisted Intervention — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 130–137.

Laser Institute of America, “American National Standard for Safe Use of Lasers,” (2007).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. dPARS mechanism. (a) PARS versus OR-PAM detection mechanism. PARS technology, unlike any other photoacoustic imaging systems, does not measure propagated ultrasound pressures but rather the initial pressure generated at the origin. (b) Comparison between two different PARS modes, a deep penetrating mode and a high-resolution mode. RBC: red blood cell. lt,Excitation= transport mean-free path of the excitation beam. lt,Probe= transport mean-free path of the probe beam.
Fig. 2.
Fig. 2. dPARS experimental setup and validation. (a) Simplified PARS apparatus. The fundamental 532-nm pulsed excitation beam is fed into a polarization-maintaining single-mode fiber (SMF), which can generate stimulated Raman scattering (SRS) broadening in the spectrum. The 1310-nm probe beam is split into the primary component made to be co-aligned with the excitation. The two beams are then co-scanned using a galvanometer mirror system or may be held stationary while scanning of the sample is performed with a motor stage (MS). The back-reflected probe beam is fed into one side of a balanced photodiode (BPD) and is compared with the smaller component of the original probe beam for balanced detection. Other system components: collimator (C), polarized beam splitter (PBS), beam splitter (BS), beam combiner (BC), attenuator (A), quarter wave plate (QWP), objective lens (OL), lens (L). (b) Image of carbon fiber networks using the deep penetrating imaging mode. (c) Image of carbon fiber networks using the high-resolution imaging mode, as well as an inset image of 100-nm gold nanoparticles. (d) Images of carbon fiber networks at various depths in tissue-mimicking solution.
Fig. 3.
Fig. 3. In vivo PARS microscopy structural images. (a) Image of en face microvasculature in the ear of an 8-week-old nude mouse (NU/NU, Charles River, MA, USA) using the high-resolution mode (scale bar: 500 µm) (b) In vivo image of red blood cells in the mouse ear using the high-resolution mode (scale bar: 5 µm) (c) Image of mouse ear vasculature using the deep-penetrating mode (scale bar: 500 µm) (d) Image of en face microvasculature in the tip of a mouse ear (NU/NU, Charles River, MA, USA) using the high-resolution mode (scale bar: 500 µm) (e) Images of back flank of mouse at various depths using the deep-penetrating mode (scale bar: 100 µm).
Fig. 4.
Fig. 4. Functional images SO2 measurement of en face microvasculature in the ear of an 8-week-old nude mouse (NU/NU, Charles River, MA, USA).