Abstract

Tunable metasurfaces open new doors for achieving dynamic wavefront manipulation in an ultracompact footprint. Dielectric metasurfaces are particularly attractive for this application due to their low-loss modes. However, their volumetric modes make them difficult to dynamically tune compared to plasmonic variants with strong field confinement. We overcome this challenge by combining dielectric resonators with an epsilon-near-zero (ENZ) mode in a thin film. By tuning the coupling between modes in the resonators and the ENZ thin film, active control over the transmittance amplitude is achieved. Operating at the wavelength of the Huygens mode, we demonstrate transmittance modulation with an on-state transmittance of 70% and a modulation depth of 31%. In addition, we create a tunable diffraction grating and demonstrate its potential use in beam steering applications. This approach provides a new avenue for high-speed and low-power modulation of dielectric metasurfaces.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene

Christos Argyropoulos
Opt. Express 23(18) 23787-23797 (2015)

Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response

Bingxin Han, Xiangjun Li, Chuanshuai Sui, Jinyan Diao, Xufeng Jing, and Zhi Hong
Opt. Mater. Express 8(8) 2197-2207 (2018)

Experimental realization of a terahertz all-dielectric metasurface absorber

Xinyu Liu, Kebin Fan, Ilya V. Shadrivov, and Willie J. Padilla
Opt. Express 25(1) 191-201 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Genevet, F. Capasso, F. Aieta, M. Khorasanineiad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  2. C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  4. N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  5. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
    [Crossref]
  6. F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  7. A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref]
  8. N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  9. Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref]
  10. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  11. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
    [Crossref]
  12. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  13. Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
    [Crossref]
  14. Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
    [Crossref]
  15. M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
    [Crossref]
  16. M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
    [Crossref]
  17. Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
    [Crossref]
  18. H. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
    [Crossref]
  19. J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
    [Crossref]
  20. P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
    [Crossref]
  21. I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
    [Crossref]
  22. Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
    [Crossref]
  23. Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  24. B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
    [Crossref]
  25. L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
    [Crossref]
  26. J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
    [Crossref]
  27. A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
    [Crossref]
  28. J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
    [Crossref]
  29. A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
    [Crossref]
  30. A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
    [Crossref]
  31. A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  32. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref]
  33. A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  34. J. Schuller and M. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
    [Crossref]
  35. F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
    [Crossref]
  36. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  37. C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
    [Crossref]
  38. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  39. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
    [Crossref]
  40. Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
    [Crossref]
  41. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
    [Crossref]
  42. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
    [Crossref]
  43. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
    [Crossref]
  44. M. Kwon, “Discussion of two ways of optically modeling indium-tin-oxide layers in slot waveguides for waveguide analysis,” IEEE Photon. J. 8, 4900108 (2016).
    [Crossref]
  45. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
    [Crossref]
  46. D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
    [Crossref]

2018 (1)

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

2017 (5)

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasanineiad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

2016 (5)

M. Kwon, “Discussion of two ways of optically modeling indium-tin-oxide layers in slot waveguides for waveguide analysis,” IEEE Photon. J. 8, 4900108 (2016).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

H. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

2015 (9)

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

2014 (5)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

2013 (9)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

2012 (6)

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2010 (2)

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

2009 (1)

2007 (1)

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

2006 (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

Aeita, F.

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Agarwal, R.

H. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasanineiad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Alù, A.

F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Atwater, H.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Aydin, K.

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Ball, A.

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Bhaskaran, M.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bohn, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Bolotin, K.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Boltasseva, A.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Booth, J.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Boulesbaa, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Bozhevolnyi, S.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Brener, I.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Briggs, D.

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Briggs, R.

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Brongersma, M.

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

J. Schuller and M. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

Campione, S.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasanineiad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Capolino, F.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

Cheah, K.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Cheng, W.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Chichkov, B.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Choi, D.

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Chong, K.

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Davoyan, A.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

de Ceglia, D.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

Decker, M.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Delvin, R.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Dolgova, T.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Ee, H.

H. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Efimov, A.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Emani, N.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Engheta, N.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

Eriksen, R.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Escobar, C.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Estakhri, N.

F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Evans, P.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

Evlyukhin, A.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fang, Z.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Fedyanin, A.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Forouzmand, A.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

Fumeaux, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasanineiad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Geohegan, D.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Gholipour, B.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Gholiqour, B.

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Gordon, J.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grbic, A.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Gutruf, P.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Haglund, R.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

Han, S.

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Hewak, D.

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

Holloway, C.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huang, Y.

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Inampudi, S.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

Jennings, G. K.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Kang, J.

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Kang, L.

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Karvounis, A.

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

Kats, M.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Keeler, G.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Kelaita, Y.

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Khorasanineiad, M.

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Kivshar, Y.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

Klots, A.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Komar, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Kravchenko, I.

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Kuester, E.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kuznetsov, A.

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Kwon, M.

M. Kwon, “Discussion of two ways of optically modeling indium-tin-oxide layers in slot waveguides for waveguide analysis,” IEEE Photon. J. 8, 4900108 (2016).
[Crossref]

Kwong, D. L.

Lee, H.

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Liu, S.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Liu, X.

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Lo, G. Q.

Loncar, M.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Lu, Y.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Luk’yanchuk, B.

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

MacDonald, K.

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

Mayer, T.

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Miroshnichenko, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Monticone, F.

F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Mosallaei, H.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Neshev, D.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Newaz, A.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Niezgoda, J. S.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Novikov, S.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

O’Hara, J.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Orfield, N.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Ou, J.

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Pala, R.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Park, J.

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Pertsch, T.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Pheiffer, C.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Prasai, D.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Pryve, I.

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Puretzky, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Qiu, C.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Reinhardt, C.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Rogers, E.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Rosenthal, S. J.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Rusak, E.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

Salandrino, A.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

Salary, M. M.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

Sautter, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

Scalora, M.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

Schuller, J.

Shalaev, V.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Shaltout, A.

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Shcherbakov, M.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Shirmanesh, G.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Shorokhov, A.

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Silveirinha, M.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

Smith, D.

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Sokhoyan, R.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Sriram, S.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Staude, I.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Su, Y. H.

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Teng, J.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Tetienne, J.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Thyagarajan, K.

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Tsai, D.

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Vabishchevich, P.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Valentine, J.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Vaskin, A.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Vincenti, M. A.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

Wang, C.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, W.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Werner, D.

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Withayachumnankul, W.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Wu, W.

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

Wynn, A.

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yuan, G.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, J.

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zheludev, N.

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Zhu, S.

Zhu, Z.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

Zou, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

Zubyuk, V.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Zyweitz, U.

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

ACS Nano (2)

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Adv. Mater. (1)

B. Gholiqour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 2050–3054 (2013).
[Crossref]

Adv. Opt. Mater. (2)

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface,” Adv. Opt. Mater. 6, 1701275 (2018).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. Neshev, I. Brener, T. Pertsch, and Y. Kivshar, “High-efficiency dielectric Huygens surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. Kivshar, I. Staude, and D. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

A. Karvounis, J. Ou, W. Wu, K. MacDonald, and N. Zheludev, “Nano-optomechanical nonlinear dielectric metamaterials,” Appl. Phys. Lett. 107, 191110 (2015).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. Holloway, E. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Photon. J. (1)

M. Kwon, “Discussion of two ways of optically modeling indium-tin-oxide layers in slot waveguides for waveguide analysis,” IEEE Photon. J. 8, 4900108 (2016).
[Crossref]

Nano Lett. (16)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

D. Prasai, A. Klots, A. Newaz, J. S. Niezgoda, N. Orfield, C. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. Bolotin, “Electrical control of near-field energy transfer between quantum dots and 2D semiconductors,” Nano Lett. 15, 4374–4380 (2015).
[Crossref]

C. Pheiffer, N. Emani, A. Shaltout, A. Boltasseva, V. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14, 2491–2497 (2014).
[Crossref]

F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, F. Aeita, P. Genevet, M. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

M. Shcherbakov, P. Vabishchevich, A. Shorokhov, K. Chong, D. Choi, I. Staude, A. Miroshnichenko, D. Neshev, A. Fedyanin, and Y. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
[Crossref]

H. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” Nano Lett. 10, 133–141 (2015).
[Crossref]

I. Pryve, K. Aydin, Y. Kelaita, R. Briggs, and H. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17, 4881–4885 (2017).
[Crossref]

A. Evlyukhin, S. Novikov, U. Zyweitz, R. Eriksen, C. Reinhardt, S. Bozhevolnyi, and B. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Nat. Commun. (6)

L. Liu, L. Kang, T. Mayer, and D. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

A. Arbabi, Y. Horie, A. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmit arrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Y. Lu, R. Sokhoyan, W. Cheng, G. Shirmanesh, A. Davoyan, R. Pala, K. Thyagarajan, and H. Atwater, “Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure,” Nat. Commun. 8, 1631 (2017).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Nat. Photonics (1)

Q. Wang, E. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. B (2)

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties,” Phys. Rev. B 87, 155140 (2013).
[Crossref]

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 115410 (2007).
[Crossref]

Phys. Rev. Lett. (3)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

F. Monticone, N. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Sci. Rep. (2)

A. Kuznetsov, A. Miroshnichenko, Y. H. Su, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

J. Park, J. Kang, X. Liu, and M. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Simulated performance of Si-based metasurfaces with cylindrical resonators. (a) Simulated transmittance and phase of resonators with spectrally separate electric and magnetic dipole Mie modes are shown in blue ( diameter = 500    nm , height = 230    nm , period = 800    nm ). Spectra of resonators with electric and magnetic dipole Mie modes overlapped (also known as a Huygens mode) are shown in red ( diameter = 535    nm , height = 230    nm , period = 800    nm ). (b) Planar field vector plots at the Mie dipole modes present in a cylindrical resonator at different frequencies. The first column depicts the fields in a cylindrical resonator at the electric dipole frequency [labeled in (a)], the second column depicts the fields at the magnetic dipole frequency [labeled in (a)], and the third column depicts the fields at the Huygens frequency (208 THz). (c) [Left] Transmittance plot of cylindrical resonators upon changing the real and imaginary components of the permittivity. The black curve is for Si with a real permittivity of 13.7 and imaginary permittivity of 0. The blue curve has an altered real permittivity of 11.7, and the red curve has an altered imaginary permittivity of 0.7. [Right] Corresponding phase plots for those appearing in [left]. [Inset]: Zoomed plot of the phase data to resolve the two plots.
Fig. 2.
Fig. 2. (a) Unit cell schematic for a silicon Huygens metasurface with an ITO film on top and a fused silica substrate. p x = p y = 800    nm , h = 230    nm , h ITO = 10    nm , and d = 480    nm . (b) Real and imaginary ITO permittivity as a function of wavelength. The red line intersecting with the x axis indicates the Huygens wavelength for the silicon resonator. The red bar intersecting with the y axis indicates the ENZ mode range for the ITO. (c)  E z field profiles for the resonator depicted in (a). The left and center figures contain ITO with plasma frequency spectrally separated and overlapped with the Huygens wavelength, respectively. The right figure is a zoomed-in field profile of the ITO when its plasma frequency is overlapped with the Huygens wavelength. The estimated carrier concentration in the accumulation layer and remainder of ITO are 8.6 e 20    e / cm 3 and 3.56 e 20    e / cm 3 , respectively. (d) Simulated absorption for the metasurface in (a) for several plasma wavelengths, increasing as the plasma wavelength approaches the Huygens wavelength. (e) Simulated transmittance for the same metasurface. (f) Unit cell schematic including dielectric bars for electrically connecting the ITO across resonators. The bar width is 80 nm. [Right] Simulated transmittance spectra for the metasurface including bars.
Fig. 3.
Fig. 3. (a) 3D illustration of the fabricated device. The bias voltage is applied between the electrolyte contact and the ITO contact. [Inset] Zoomed image of the resonator structure within the array. (b) SEM image of the fabricated Si metasurface. (c) Schematic demonstration of the working principle of the device. The electric bilayer formed at the solid electrolyte/ITO interface is responsible for the local increase in ITO carrier density, changing its permittivity.
Fig. 4.
Fig. 4. Transmittance experiment results. (a) Experimental transmittance spectrum of the fabricated device at three distinct applied bias voltages. The gray vertical bar indicates the wavelength at which the IR camera images in (c) were taken. (b) Simulated transmittance spectrum of the fabricated device at three distinct ITO plasma wavelengths. (c) IR camera images of the device at three bias voltages using monochromatic light at the working wavelength of the device. (d) Peak transmittance amplitude as a function of bias voltage, showing several intermediate voltage steps.
Fig. 5.
Fig. 5. (a) Schematic of the ITO grating structure over the array with dimensions d = 3.2    μm and p = 8    μm . Horizontal strips of ITO cover the silicon (blue) array, which alternate between those connected to an electrode (green) and those not electrically connected (orange). (b) Optical image of the completed device with patterned ITO in bars across the resonator array. [Right] Colored schematic illustrating which portions of the array are electrically modulated. The colors match with those illustrated in (a). (c) [Left] IR camera image at 1470 nm light of the device at a positive bias voltage. [Right] Fourier plane image of light transmitted through the metasurface. The white dashed circle represents the maximum angular field of view due to the numerical aperture of the objective used in the experiment (26°). (d) [Left] IR camera image at 1470 nm light of the device at a negative bias voltage. [Right] Fourier plane image showing the diffraction pattern of the device. The plots on the right are simulated intensity plots of the diffraction pattern, labeled with the expected modes for a grating with period p = 8    μm ( m = ± 1 , 10.6°) ( m = ± 2 , 21.4°).

Metrics