Abstract

Ultrafast sources in the mid-IR are indispensable research tools for spectroscopic and medical applications and can also potentially be used to generate attosecond pulses. We investigated a route to directly achieve self-compressed supercontinuum pulses with an octave-exceeding spectrum extending into the mid-IR by employing self-defocusing nonlinearities obtained through cascaded χ(2) interactions in domain-structured ferroelectrics. A model was developed based on a single-wave nonlinear envelope equation that accounts for cascaded χ(2) nonlinearities, the native Kerr response from the third-order nonlinear polarization, and the delayed Raman response. Experimental validation of the model was carried out by using an in-house fabricated, periodically poled, Rb-doped KTiOPO4 crystal with a period of 36 μm. A supercontinuum spectrum spanning from 1.1 to 2.7 μm was achieved, as well as self-compression down to 18.6 fs, from a 128 fs pump pulse at 1.52 μm. Using the actual pump pulse and sample parameters, excellent agreement was reached between the model and the experimental results, thus proving the validity of the model. As periodically poled KTiOPO4 can be obtained with large apertures, this approach is energy scalable and hence promising for future development in the field.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion

Hairun Guo, Binbin Zhou, Xianglong Zeng, and Morten Bache
Opt. Express 22(10) 12211-12225 (2014)

Simultaneous femtosecond-pulse compression and second-harmonic generation in aperiodically poled KTiOPO4

P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell
Opt. Lett. 24(15) 1071-1073 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
    [Crossref]
  2. T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.
  3. A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21, 24770–24780 (2013).
    [Crossref]
  4. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [Crossref]
  5. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref]
  6. M. Sheik-Bahae, “Nonlinear optics of bound electrons in solids,” in Nonlinear Optical Materials, J. V. Moloney, ed. (Springer, 1998), pp. 205–224.
  7. B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA,” Opt. Express 22, 20798–20808 (2014).
    [Crossref]
  8. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
    [Crossref]
  9. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
    [Crossref]
  10. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
    [Crossref]
  11. M. Conforti and F. Baronio, “Extreme high-intensity and ultra-broadband interactions in anisotropic β-BaB2O4 crystals,” J. Opt. Soc. Am. B 30, 1041–1047 (2013).
    [Crossref]
  12. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref]
  13. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
    [Crossref]
  14. M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19, 4121–4128 (2011).
    [Crossref]
  15. M. Levenius, M. Conforti, F. Baronio, V. Pasiskevicius, F. Laurell, C. De Angelis, and K. Gallo, “Multistep quadratic cascading in broadband optical parametric generation,” Opt. Lett. 37, 1727–1729 (2012).
    [Crossref]
  16. B. Zhou, H. Guo, and M. Bache, “Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal,” Opt. Express 23, 6924–6936 (2015).
    [Crossref]
  17. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [Crossref]
  18. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
    [Crossref]
  19. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 2.
  21. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [Crossref]
  22. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39, 5058–5069 (2000).
    [Crossref]
  23. H. Jang, A.-L. Viotti, G. Strömqvist, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Counter-propagating parametric interaction with phonon-polaritons in periodically poled KTiOPO4,” Opt. Express 25, 2677–2686 (2017).
    [Crossref]
  24. G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
    [Crossref]
  25. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88, 041110 (2006).
    [Crossref]
  26. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
    [Crossref]
  27. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
    [Crossref]
  28. R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
    [Crossref]
  29. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
    [Crossref]
  30. F. Bach, M. Mero, V. Pasiskevicius, A. Zukauskas, and V. Petrov, “High repetition rate, femtosecond and picosecond laser induced damage thresholds of Rb:KTiOPO4 at 1.03  μm,” Opt. Mater. Express 7, 744–750 (2017).
    [Crossref]
  31. H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [Crossref]
  32. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [Crossref]
  33. M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order materials KTiOPO4, KNbO3, -BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
    [Crossref]
  34. M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).
  35. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
    [Crossref]
  36. A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO4 below 400 nm at high peak-intensities,” Opt. Express 21, 1395–1403 (2013).
    [Crossref]
  37. Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
    [Crossref]
  38. S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
    [Crossref]
  39. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
    [Crossref]
  40. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Springer, 2012).
  41. R. Budriunas, D. Kucinskas, and A. Varanavicius, “High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses,” Appl. Phys. B 123, 212 (2017).
    [Crossref]
  42. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm × 5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
    [Crossref]
  43. H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express 16, 16963–16970 (2008).
    [Crossref]
  44. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [Crossref]
  45. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
    [Crossref]
  46. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Role of apodization in optical parametric amplifiers based on aperiodic quasi-phasematching gratings,” Opt. Express 20, 18066–18071 (2012).
    [Crossref]
  47. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551–1568 (2013).
    [Crossref]

2017 (3)

2016 (1)

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (4)

2012 (3)

2011 (4)

2010 (2)

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[Crossref]

2009 (1)

2008 (2)

H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express 16, 16963–16970 (2008).
[Crossref]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

2007 (4)

2006 (1)

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88, 041110 (2006).
[Crossref]

2005 (1)

2002 (1)

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

2001 (1)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

2000 (2)

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39, 5058–5069 (2000).
[Crossref]

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

1997 (3)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[Crossref]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order materials KTiOPO4, KNbO3, -BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

1992 (2)

1989 (1)

1988 (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 2.

Arie, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Assion, A.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Bach, F.

Bache, M.

B. Zhou, H. Guo, and M. Bache, “Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal,” Opt. Express 23, 6924–6936 (2015).
[Crossref]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
[Crossref]

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Bang, O.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

Baronio, F.

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Bethge, J.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Bierlein, J. D.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Bréhat, F.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Budriunas, R.

R. Budriunas, D. Kucinskas, and A. Varanavicius, “High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses,” Appl. Phys. B 123, 212 (2017).
[Crossref]

Büttner, E.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

Canalias, C.

Carabatos-Nedelec, C.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Chang, D.

Conforti, M.

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Cussat-Blanc, S.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

De Angelis, C.

M. Levenius, M. Conforti, F. Baronio, V. Pasiskevicius, F. Laurell, C. De Angelis, and K. Gallo, “Multistep quadratic cascading in broadband optical parametric generation,” Opt. Lett. 37, 1727–1729 (2012).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[Crossref]

DeSalvo, R.

Diebold, A.

Ebrahimzadeh, M.

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order materials KTiOPO4, KNbO3, -BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Emaury, F.

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Fontana, M. D.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Freysz, E.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

Gallmann, L.

Gallo, K.

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Guo, H.

Hagan, D. J.

Hansel, T.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

Hansson, G.

Hartl, I.

Heese, C.

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
[Crossref]

Hutton, K. B.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

Ishizuki, H.

Ivanov, A.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

Jang, H.

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

Jiang, Q.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Karlsson, H.

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39, 5058–5069 (2000).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[Crossref]

Keller, U.

Klenner, A.

Köhler, W.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Kucinskas, D.

R. Budriunas, D. Kucinskas, and A. Varanavicius, “High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses,” Appl. Phys. B 123, 212 (2017).
[Crossref]

Kugel, G. E.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

Langrock, C.

Laurell, F.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

M. Levenius, M. Conforti, F. Baronio, V. Pasiskevicius, F. Laurell, C. De Angelis, and K. Gallo, “Multistep quadratic cascading in broadband optical parametric generation,” Opt. Lett. 37, 1727–1729 (2012).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[Crossref]

M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19, 4121–4128 (2011).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88, 041110 (2006).
[Crossref]

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39, 5058–5069 (2000).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[Crossref]

Levenius, M.

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

Lin, Y. W.

Lindberg, R.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Lupinski, D.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

Malmström, M.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Mangin, J.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Marnier, G.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Mayer, B. W.

Mero, M.

Moses, J.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
[Crossref]

Oron, D.

Pasiskevicius, V.

F. Bach, M. Mero, V. Pasiskevicius, A. Zukauskas, and V. Petrov, “High repetition rate, femtosecond and picosecond laser induced damage thresholds of Rb:KTiOPO4 at 1.03  μm,” Opt. Mater. Express 7, 744–750 (2017).
[Crossref]

H. Jang, A.-L. Viotti, G. Strömqvist, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Counter-propagating parametric interaction with phonon-polaritons in periodically poled KTiOPO4,” Opt. Express 25, 2677–2686 (2017).
[Crossref]

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO4 below 400 nm at high peak-intensities,” Opt. Express 21, 1395–1403 (2013).
[Crossref]

M. Levenius, M. Conforti, F. Baronio, V. Pasiskevicius, F. Laurell, C. De Angelis, and K. Gallo, “Multistep quadratic cascading in broadband optical parametric generation,” Opt. Lett. 37, 1727–1729 (2012).
[Crossref]

M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19, 4121–4128 (2011).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88, 041110 (2006).
[Crossref]

Pelc, J. S.

Petrov, V.

Phillips, C. R.

Prabhudesai, V.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Saraceno, C. J.

Schiek, R.

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

Schilt, S.

Schriber, C.

Sheik-Bahae, M.

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order materials KTiOPO4, KNbO3, -BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]

M. Sheik-Bahae, “Nonlinear optics of bound electrons in solids,” in Nonlinear Optical Materials, J. V. Moloney, ed. (Springer, 1998), pp. 205–224.

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref]

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Stegeman, G.

Strömqvist, G.

Suchowski, H.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref]

Südmeyer, T.

Taira, T.

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Thilmann, N.

Thomas, P. A.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Springer, 2012).

Van Stryland, E. W.

Vanherzeele, H.

Varanavicius, A.

R. Budriunas, D. Kucinskas, and A. Varanavicius, “High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses,” Appl. Phys. B 123, 212 (2017).
[Crossref]

Viotti, A.-L.

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39, 5058–5069 (2000).
[Crossref]

Ward, R. C. C.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Wise, F. W.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
[Crossref]

Wyncke, B.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Zeil, P.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Zhou, B.

Zhou, B. B.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

Zukauskas, A.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

R. Budriunas, D. Kucinskas, and A. Varanavicius, “High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses,” Appl. Phys. B 123, 212 (2017).
[Crossref]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4 and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
[Crossref]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Appl. Phys. Lett. (3)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88, 041110 (2006).
[Crossref]

J. Appl. Phys. (1)

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys. 92, 2717–2723 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

J. Phys. C (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Nat. Commun. (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Opt. Commun. (1)

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order materials KTiOPO4, KNbO3, -BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

Opt. Express (10)

H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express 16, 16963–16970 (2008).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref]

M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19, 4121–4128 (2011).
[Crossref]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
[Crossref]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Role of apodization in optical parametric amplifiers based on aperiodic quasi-phasematching gratings,” Opt. Express 20, 18066–18071 (2012).
[Crossref]

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO4 below 400 nm at high peak-intensities,” Opt. Express 21, 1395–1403 (2013).
[Crossref]

A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21, 24770–24780 (2013).
[Crossref]

B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA,” Opt. Express 22, 20798–20808 (2014).
[Crossref]

B. Zhou, H. Guo, and M. Bache, “Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal,” Opt. Express 23, 6924–6936 (2015).
[Crossref]

H. Jang, A.-L. Viotti, G. Strömqvist, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Counter-propagating parametric interaction with phonon-polaritons in periodically poled KTiOPO4,” Opt. Express 25, 2677–2686 (2017).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (2)

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. A (2)

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[Crossref]

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Sci. Rep. (1)

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Other (6)

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Springer, 2012).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 2.

T. Hansel, W. Köhler, A. Assion, J. Bethge, and E. Büttner, “NIR and MIR tunable 130  fs supercontinuum-seeded OPA with 25  nJ pulse energy and 5  MHz repetition rate,” in Conference on Lasers and Electro-Optics—International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_9_2.

M. Sheik-Bahae, “Nonlinear optics of bound electrons in solids,” in Nonlinear Optical Materials, J. V. Moloney, ed. (Springer, 1998), pp. 205–224.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Group index for c polarization (dashed line) and group velocity dispersion (solid line) as a function of the wavelength for KTP. The horizontal black solid line represents zero GVD. (b) KTP third-order dispersion (TOD). (c) Phase mismatch (dashed line) and n2casc spectrum for KTP (solid line); the vertical dotted red line in (a) and (b) highlights the zero GVD wavelength. (d) Zoomed-in plot of the n2casc spectrum for the region of interest.
Fig. 2.
Fig. 2. (a) Calculated spectral evolution along the 10 mm PPKTP crystal, (b) calculated temporal evolution of the femtosecond pulse, (c) output supercontinuum spectrum after the 10 mm long PPKTP crystal, (d) temporal comparison of input pump pulse and output supercontinuum pulse for fRT=0.5.
Fig. 3.
Fig. 3. Schematic of the SHG-FROG/SFG-XFROG setup.
Fig. 4.
Fig. 4. (a) SHG-FROG retrieved spectrum and spectral phase of the pump beam centered at 1.52 μm, (b) the temporal profile of the input pump pulse. The FWHM is 128 fs. The FROG error was calculated to be 0.48%.
Fig. 5.
Fig. 5. (a) Measured SFG-XFROG trace and (b) retrieved SFG-XFROG trace of the supercontinuum pulse. The time axes are reversed, and the color bars represent the normalized spectrogram amplitude in log scale. (c) Retrieved spectrum and spectral phase of the supercontinuum pulse. A long-pass filter cuts away wavelengths shorter than 1.1 μm.
Fig. 6.
Fig. 6. (a) Calculated spectral distribution and (b) the calculated temporal evolution of the pump pulse along the 11 mm long PPRKTP crystal. The Raman coefficient fRT was set to 0.5.
Fig. 7.
Fig. 7. Comparison of (a) output temporal profiles and (b) output supercontinuum spectra for both the numerical model (blue solid curves) and the experimental results (orange solid curves). The experimentally obtained spectrum starts above 1 μm because a long-pass filter was used in the SFG-XFROG setup, cutting away shorter wavelengths.

Tables (1)

Tables Icon

Table 1. Parameters Used for the Simulations of Raman Delayed Response Including Two Resonances for KTP from [23,24]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

AZ+(iDα)A=iχ(2)ω024β0c2(1iω0t)[A2eiω0ti(β0β1ω0)Z+2|A|2eiω0t+i(β0β1ω0)Z]+iγ(ω0)(1iω0t)A  +R(t)|A(Z,tt)|2dt,
FT[iDα]=i(k(ω)β0β1(ωω0))α(ω),
χ(2)=d33sign(cos(2πZΛ)),
γ(ω0)=12ω0n(ω0)ϵ0n2nat,
R(t)=(1fRT)δ(t)+j=1NfRjτ1j2+τ2j2τ1jτ2j2H(t)etτ2jsin(tτ1j),
n2casc=2ωpd332nωp2n2ωpc2ϵ0Δk(sinc(ΔkL)1),
Δk=k(2ωp)2k(ωp)Kg,

Metrics