Abstract

Metamaterials are important, as they possess properties not found in simple materials. Photonic device technology applying metamaterials supports many new and useful applications. Here, we address the fundamental physics of wideband metamaterial reflectors. We show that these devices operate because of resonant leaky Bloch modes propagating in the periodic lattice. Moreover, in contrast to published literature, we demonstrate that Mie scattering in individual array particles is not a causal effect. In particular, by connecting the constituent particles by a matched sublayer and thereby destroying the Mie cavity, we find that the resonance bandwidth actually expands even though localized Mie resonances have been extinguished. There is no abrupt change in the reflection characteristics on addition of a sublayer to any metamaterial array consisting of discrete particles. Thus, the physics of the discrete and connected arrays is the same. The resonant Bloch mode picture is supported by numerous additional examples and analyses presented herein.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers

Mehrdad Shokooh-Saremi and Robert Magnusson
Opt. Express 16(22) 18249-18263 (2008)

Physical basis for wideband resonant reflectors

Robert Magnusson and Mehrdad Shokooh-Saremi
Opt. Express 16(5) 3456-3462 (2008)

Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial

Fuli Zhang, Lei Chen, Ying Wang, Qian Zhao, Xuan He, and Ke Chen
Opt. Express 22(21) 24908-24913 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
    [Crossref]
  2. P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
    [Crossref]
  3. P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
    [Crossref]
  4. Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
    [Crossref]
  5. J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.
  6. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Grener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
    [Crossref]
  7. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007).
    [Crossref]
  8. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
    [Crossref]
  9. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
    [Crossref]
  10. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
    [Crossref]
  11. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  12. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  13. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref]
  14. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  15. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  16. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref]
  17. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
    [Crossref]
  18. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
    [Crossref]
  19. G. Mie, “Beiträge zur Optic truber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  20. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94, 65–68 (1947).
    [Crossref]
  21. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
    [Crossref]
  22. S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys. Condens. Matter 14, 6383–6394 (2002).
    [Crossref]
  23. J. C. Ginn and I. Brener, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
    [Crossref]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
    [Crossref]
  25. S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
    [Crossref]
  26. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
    [Crossref]
  27. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
    [Crossref]
  28. L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
    [Crossref]
  29. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [Crossref]
  30. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [Crossref]
  31. Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
    [Crossref]
  32. D. R. Smith and S. Schultz, “Determination of effective permittvity and permeability of metamaterials from reflection and transmittance coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  33. X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [Crossref]
  34. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
    [Crossref]
  35. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102 (2011).
    [Crossref]
  36. V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
    [Crossref]
  37. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [Crossref]
  38. Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflector and their correlation with spectra of one-dimensional equivalents,” IEEE Photon. J. 7, 4900210 (2015).
    [Crossref]
  39. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
    [Crossref]
  40. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
    [Crossref]
  41. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  42. R. Gomez-Medina, M. Laroche, and J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
    [Crossref]
  43. P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
    [Crossref]

2017 (1)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

2016 (4)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

2015 (6)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
[Crossref]

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflector and their correlation with spectra of one-dimensional equivalents,” IEEE Photon. J. 7, 4900210 (2015).
[Crossref]

2014 (4)

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
[Crossref]

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Grener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

2013 (2)

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

2012 (4)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

J. C. Ginn and I. Brener, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

2011 (3)

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102 (2011).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

2010 (1)

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

2008 (3)

I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
[Crossref]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007).
[Crossref]

2006 (1)

2005 (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

2004 (2)

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

2003 (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

2002 (2)

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys. Condens. Matter 14, 6383–6394 (2002).
[Crossref]

D. R. Smith and S. Schultz, “Determination of effective permittvity and permeability of metamaterials from reflection and transmittance coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

1995 (1)

1990 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94, 65–68 (1947).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optic truber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Alù, A.

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102 (2011).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Bagby, J. S.

Baker-Jarvis, J.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

Bardou, N.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Bender, D. A.

Berding, M.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bonod, N.

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

J. C. Ginn and I. Brener, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Briggs, D. P.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Brocker, D.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Campione, S.

Capasso, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Clem, P. G.

Collin, S.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Corbitt, S. J.

S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
[Crossref]

Cummer, S. A.

I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Demésy, G.

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

Ding, Y.

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Du, H.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Engheta, N.

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Francoeur, M.

S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Gaylord, T. K.

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Ghenuche, P.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Ginn, J.

Ginn, J. C.

J. C. Ginn and I. Brener, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Gomez-Medina, R.

Grann, E. B.

Grener, I.

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Grigoriev, V.

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Hadïar, R.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Hao, J. Z.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Hedge, R.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

Huang, H.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Ihlefeld, J. F.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jun, Y. C.

Kabos, P.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ko, Y. H.

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflector and their correlation with spectra of one-dimensional equivalents,” IEEE Photon. J. 7, 4900210 (2015).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Kravchencko, I.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Krishnamurthy, S.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Lan, L.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Larcoche, M.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Laroche, M.

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94, 65–68 (1947).
[Crossref]

Li, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Li, E. P.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

Li, L.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Li, W.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Liu, S.

Liu, X.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

Liu, Z.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Magnusson, R.

Mahony, T. S.

Mayer, T. S.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Mie, G.

G. Mie, “Beiträge zur Optic truber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Moharam, M. G.

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Moritra, P.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

O’Brien, S.

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys. Condens. Matter 14, 6383–6394 (2002).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Pan, P.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

Park, G. H.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

Pelouard, J.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Pendry, J. B.

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys. Condens. Matter 14, 6383–6394 (2002).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Pommet, D. A.

Popa, I.

I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Qu, S.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Raeymaekers, B.

S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
[Crossref]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saenz, J. J.

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Schultz, S.

D. R. Smith and S. Schultz, “Determination of effective permittvity and permeability of metamaterials from reflection and transmittance coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Seokho, Y.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shokooh-Saremi, M.

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflector and their correlation with spectra of one-dimensional equivalents,” IEEE Photon. J. 7, 4900210 (2015).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
[Crossref]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007).
[Crossref]

Simovski, C. R.

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

Sinclair, M. B.

Slovick, B.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

Slovick, B. A.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

Smith, D. R.

D. R. Smith and S. Schultz, “Determination of effective permittvity and permeability of metamaterials from reflection and transmittance coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Szabó, Z.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

Valentine, J.

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Vincent, G.

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Wang, J.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Wang, S. S.

Wang, Y.

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

Wendt, J. R.

Wenger, J.

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

Werner, D. H.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Wright, J. B.

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Xu, Z.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Yu, Z. G.

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

Zhang, J.

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Zhou, J.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

ACS Photon. (1)

P. Moritra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optic truber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (2)

P. Moritra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104, 171102 (2014).
[Crossref]

L. Li, J. Wang, J. Wang, H. Du, H. Huang, J. Zhang, S. Qu, and Z. Xu, “All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators,” Appl. Phys. Lett. 106, 212904 (2015).
[Crossref]

IEEE Photon. J. (1)

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflector and their correlation with spectra of one-dimensional equivalents,” IEEE Photon. J. 7, 4900210 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramer–Kronig relationship,” IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010).
[Crossref]

J. Inst. Electr. Eng. Part III (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94, 65–68 (1947).
[Crossref]

J. Opt. (2)

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Condens. Matter (1)

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys. Condens. Matter 14, 6383–6394 (2002).
[Crossref]

J. Phys. D (1)

Z. Liu, X. Liu, Y. Wang, and P. Pan, “High-index dielectric meta-materials for near-perfect broadband reflectors,” J. Phys. D 49, 195101 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. J. Corbitt, M. Francoeur, and B. Raeymaekers, “Implementation of optical dielectric metamaterials: a review,” J. Quant. Spectrosc. Radiat. Transfer 158, 3–16 (2015).
[Crossref]

Nano Lett. (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nat. Photonics (3)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Nature (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (5)

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102 (2011).
[Crossref]

V. Grigoriev, G. Demésy, J. Wenger, and N. Bonod, “Singular analysis to homogenize planar metamaterials as nonlocal effective media,” Phys. Rev. B 89, 245102 (2014).
[Crossref]

D. R. Smith and S. Schultz, “Determination of effective permittvity and permeability of metamaterials from reflection and transmittance coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88, 165114 (2013).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007).
[Crossref]

Phys. Rev. E (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, and J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Phys. Rev. Lett. (4)

I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref]

J. C. Ginn and I. Brener, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

P. Ghenuche, G. Vincent, M. Larcoche, N. Bardou, R. Hadïar, J. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[Crossref]

Science (2)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (1)

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (2012), pp. 1–2.

Supplementary Material (5)

NameDescription
» Supplement 1       Supplementary Materials
» Visualization 1       Infinite grating with discrete ridges without sublayer.
» Visualization 2       Nondiscrete infinite grating with a sublayer.
» Visualization 3       Discrete finite grating without sublayer.
» Visualization 4       Nondiscrete finite grating with a sublayer.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Fundamental theories to model dielectric MM reflectors. (a) Assembled from single particles into periodic arrays, Mie scattering and effective medium theory (EMT) are widely used to predict the spectral response of a reflector. This methodology engineers the electric and magnetic dipoles of isolated elements to design dielectric MM reflectors. (b) Lattice resonance grounded in lateral leaky Bloch modes provides a unified approach that applies to arrays of discrete and connected elemental particles. With numerical optimization, both 1D and 2D periodic reflectors are designed.
Fig. 2.
Fig. 2. Wideband metamaterial reflector examples. (a) Structure of a silicon (Si) reflector with a homogenous sublayer. (b) Calculated reflectance ( R 0 ) map as a function of sublayer thickness D h . (c) Reflectance spectra for optimal D h = 78 and 110 nm as compared with the spectrum without a sublayer. The electric-field distribution in the device is shown in the inset. (d) Grating reflector without a sublayer with a high-index ( n H ) dielectric array in a low-index ( n C ) background. (e)  R 0 map for the reflector in (d) under strong index modulation ( n H = 3.464 , n C = n L = 1 ). As the refractive-index modulation is weakened, the reflection bands narrow and take on the signature of discrete waveguide modes in an effective-medium slab corresponding to the reflector. Thus, in (f) we show an R 0 map for weak index modulation ( n H = 2.794 , n L = 2.3 , n C = 1 ) and in (g) we display the modal curves in the slab waveguide where the observed modes are driven by the first evanescent diffraction orders of the grating. The agreement between (f) and (g) is undeniable and strongly supports the leaky-mode resonance picture of this device class.
Fig. 3.
Fig. 3. TM-polarized resonant reflector based on a 1D Si grating. The grating excites resonant leaky modes, providing wide reflection bands. (a) Reflector designed with traditional grating parameters. (b) Calculated R 0 map as a function of the sublayer thickness. Cross-sectional views of the magnetic-field amplitude distribution appear in (c) for the grating with discrete ridges ( D h = 0    nm ) at λ = 1.62    μm and in (d) for the connected grating with a sublayer D h = 267    nm at λ = 1.55    μm .
Fig. 4.
Fig. 4. Mie scattering and guided-mode resonance in relation to the 1D Si grating in Fig. 3(c). (a) Schematic of Mie scattering with a single infinite Si rod. (b) Calculated total scattering cross-section spectrum for the rod with R 0 for the corresponding periodic array measured on the right-hand scale. (c) Field magnitude profiles at principal wavelengths (i) 1.426 and (ii) 2.1 μm. Magnitude and phase of the field distribution in (d) a single rod and (e) Si grating at the same wavelength of (iii) 1.62 μm.
Fig. 5.
Fig. 5. Effective optical properties of 1D discrete and connected grating reflectors. (a) Algorithmic procedure for determination of effective electromagnetic parameters. Retrieved and RCWA-computed reflectance for the (b) 1D discrete reflector and (c) 1D non-discrete reflector. The effective material constants ( Z , n ) and ( μ + j μ and ε + j ε ) are calculated by homogenization for these (d), (f) discrete and (e), (g) non-discrete reflectors. The grating parameter sets are { Λ = 660    nm , F = 0.6 , D g = 430    nm , D h = 0    nm } and { Λ = 660    nm , F = 0.6 , D g = 430    nm , D h = 267    nm }.
Fig. 6.
Fig. 6. Variation of the reflectance of the 2D grating with period. Reflectance as a function of the period for the 2D Si discrete-particle reflector where the rod diameter is D = 400    nm with height H = 500    nm .

Metrics