Abstract

Thermophotovoltaics (TPV) is the process by which photons radiated from a thermal emitter are converted into electrical power via a photovoltaic cell. Selective thermal emitters that can survive at temperatures at or above 1000°C have the potential to greatly improve the efficiency of TPV energy conversion by restricting the emission of photons with energies below the photovoltaic (PV) cell bandgap energy. In this work, we demonstrated TPV energy conversion using a high-temperature selective emitter, dielectric filter, and 0.6 eV In0.68Ga0.32As photovoltaic cell. We fabricated a passivated platinum and alumina frequency-selective surface by conventional stepper lithography. To our knowledge, this is the first demonstration of TPV energy conversion using a metamaterial emitter. The emitter was heated to >1000°C, and converted electrical power was measured. After accounting for geometry, we demonstrated a thermal-to-electrical power conversion efficiency of 24.1±0.9% at 1055°C. We separately modeled our system consisting of a selective emitter, dielectric filter, and PV cell and found agreement with our measured efficiency and power to within 1%. Our results indicate that high-efficiency TPV generators are possible and are candidates for remote power generation, combined heat and power, and heat-scavenging applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array

Wei Gu, Guihua Tang, and Wenquan Tao
Opt. Express 23(24) 30681-30694 (2015)

Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate

Takuya Inoue, Kohei Watanabe, Takashi Asano, and Susumu Noda
Opt. Express 26(2) A192-A208 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Aigrain, “The thermophotovoltaic converter,” (1960) (unpublished lectures given at MIT).
  2. B. D. Wedlock, “Thermo-photo-voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
    [Crossref]
  3. W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
    [Crossref]
  4. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
    [Crossref]
  5. M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
    [Crossref]
  6. C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
    [Crossref]
  7. A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
    [Crossref]
  8. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  9. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref]
  10. L. D. Woolf, “Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion,” Sol. Cells 19, 19–38 (1986).
    [Crossref]
  11. C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
    [Crossref]
  12. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref]
  13. D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
    [Crossref]
  14. S. Molesky, C. W. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref]
  15. E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
    [Crossref]
  16. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
    [Crossref]
  17. S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
    [Crossref]
  18. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
    [Crossref]
  19. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
    [Crossref]
  20. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
    [Crossref]
  21. T. J. Coutts and J. S. Ward, “Thermophotovoltaic and photovoltaic conversion at high-flux densities,” IEEE Trans. Electron Devices 46, 2145–2153 (1999).
    [Crossref]
  22. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaics: Heat and electric power from low bandgap “solar” cells around gas fired radiant tube burners,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1553–1556.
  23. Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
    [Crossref]
  24. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
    [Crossref]
  25. V. Ganapati, T. P. Xiao, and E. Yablonovitch, “Ultra-efficient thermophotovoltaics exploiting spectral filtering by the photovoltaic band-edge,” arXiv: 1611.03544 (2016).
  26. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012).
    [Crossref]
  27. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [Crossref]
  28. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
    [Crossref]
  29. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [Crossref]
  30. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref]
  31. S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
    [Crossref]
  32. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
    [Crossref]
  33. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
    [Crossref]
  34. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
    [Crossref]
  35. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
    [Crossref]
  36. L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.
  37. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
    [Crossref]
  38. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
    [Crossref]
  39. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
    [Crossref]
  40. M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
    [Crossref]
  41. T. Satō, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
    [Crossref]
  42. N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
    [Crossref]
  43. J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
    [Crossref]
  44. J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).
  45. Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci. 37, 669–715 (2011).
    [Crossref]
  46. H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
    [Crossref]

2017 (1)

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

2015 (1)

H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
[Crossref]

2014 (8)

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

2013 (5)

S. Molesky, C. W. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

2012 (5)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci. 37, 669–715 (2011).
[Crossref]

2010 (2)

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

2009 (1)

2008 (1)

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

2007 (2)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

2006 (1)

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

2005 (1)

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

2004 (3)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
[Crossref]

2003 (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
[Crossref]

1999 (1)

T. J. Coutts and J. S. Ward, “Thermophotovoltaic and photovoltaic conversion at high-flux densities,” IEEE Trans. Electron Devices 46, 2145–2153 (1999).
[Crossref]

1998 (1)

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

1986 (1)

L. D. Woolf, “Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion,” Sol. Cells 19, 19–38 (1986).
[Crossref]

1967 (1)

T. Satō, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[Crossref]

1963 (1)

B. D. Wedlock, “Thermo-photo-voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Abedrabbo, S.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Aigrain, P.

P. Aigrain, “The thermophotovoltaic converter,” (1960) (unpublished lectures given at MIT).

An, H.

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

Araghchini, M.

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012).
[Crossref]

Avery, J. E.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
[Crossref]

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaics: Heat and electric power from low bandgap “solar” cells around gas fired radiant tube burners,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1553–1556.

Basu, S.

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Bermel, P.

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Bethke, D. T.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Bianchi, M.

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

Bingham, C.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Blaich, J. D.

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

Bragg, M. J.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Bright, T. J.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Cederberg, J. G.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
[Crossref]

Chan, W.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Chen, W.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Chen, Y. B.

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Chua, K. J.

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

Chubb, D. L.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Coutts, T. J.

T. J. Coutts and J. S. Ward, “Thermophotovoltaic and photovoltaic conversion at high-flux densities,” IEEE Trans. Electron Devices 46, 2145–2153 (1999).
[Crossref]

Crowley, C. J.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Daneshvar, H.

H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
[Crossref]

Daniels, W. E.

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

DeMeo, D.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Dewalt, C. W.

Drevillon, J.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

El-Genk, M. S.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Elkouh, N. A.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Fan, S.

Fedosejevs, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Ferrari, C.

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Fraas, L. M.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
[Crossref]

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaics: Heat and electric power from low bandgap “solar” cells around gas fired radiant tube burners,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1553–1556.

Ganapati, V.

V. Ganapati, T. P. Xiao, and E. Yablonovitch, “Ultra-efficient thermophotovoltaics exploiting spectral filtering by the photovoltaic band-edge,” arXiv: 1611.03544 (2016).

Ghebrebrhan, M.

Girard, G. R.

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

Greffet, J. J.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Grine, A. D.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Hamam, R.

Hensley, J.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Hu, H.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Huang, H. X.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
[Crossref]

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaics: Heat and electric power from low bandgap “solar” cells around gas fired radiant tube burners,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1553–1556.

Huang, R.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

Huang, X. H.

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

Hui, S.

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

Ilak, M.

Ilic, O.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

Jablan, M.

Jacob, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

S. Molesky, C. W. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Jiang, D. Y.

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

Joannopoulos, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

Joannopoulos, J. D.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Johnson, S. G.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Joulain, K.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

Ju, Y.

Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci. 37, 669–715 (2011).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Kassakian, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
[Crossref]

Kherani, N. P.

H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Latham, N. P.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Lee, S. R.

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Link, S. D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Mahorter, R. G.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Maruta, K.

Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci. 37, 669–715 (2011).
[Crossref]

Melino, F.

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

Messham, R. L.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Minkin, L. M.

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

Molesky, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

S. Molesky, C. W. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Murray, C. S.

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

Murray, S.

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

Nanda, A. K.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Nazemifard, N.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

Nelson, D. P.

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

O’Sullivan, F.

Padilla, W.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Palmisiano, M. N.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Pan, J. F.

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Pendharker, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Peretto, A.

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

Perreault, D.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012).
[Crossref]

Poursoti, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Pramanik, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Prinja, R.

H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
[Crossref]

Ravindra, N. M.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Rephaeli, E.

Rinnerbauer, V.

Rodriguez, A. W.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

Sakr, E. S.

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
[Crossref]

Samaras, J. E.

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

Sato, T.

T. Satō, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Schmuck, G. P.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Schultz, R. W.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Shaner, E. A.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Shemelya, C.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Siergiej, R. R.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Speranza, A. C.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Starko-Bowes, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Strauch, J. E.

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

Ten Eyck, G. A.

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

Thundat, T.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

Tong, F. M.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Vandervelde, T. E.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Wang, C.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

Wang, L. P.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

Ward, J. S.

T. J. Coutts and J. S. Ward, “Thermophotovoltaic and photovoltaic conversion at high-flux densities,” IEEE Trans. Electron Devices 46, 2145–2153 (1999).
[Crossref]

Wedlock, B. D.

B. D. Wedlock, “Thermo-photo-voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Wehrer, R. J.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Wernsman, B.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

Woolf, D.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Woolf, L. D.

L. D. Woolf, “Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion,” Sol. Cells 19, 19–38 (1986).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Wu, X.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Xiao, T. P.

V. Ganapati, T. P. Xiao, and E. Yablonovitch, “Ultra-efficient thermophotovoltaics exploiting spectral filtering by the photovoltaic band-edge,” arXiv: 1611.03544 (2016).

Yablonovitch, E.

V. Ganapati, T. P. Xiao, and E. Yablonovitch, “Ultra-efficient thermophotovoltaics exploiting spectral filtering by the photovoltaic band-edge,” arXiv: 1611.03544 (2016).

Yang, M. W.

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

Yeng, Y. X.

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

Zhang, Z. M.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Zhou, Z.

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

AIP Conf. Proc. (1)

C. J. Crowley, N. A. Elkouh, S. Murray, D. L. Chubb, M. S. El-Genk, and M. J. Bragg, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Appl. Energy (2)

M. Bianchi, C. Ferrari, F. Melino, and A. Peretto, “Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings,” Appl. Energy 97, 704–713 (2012).
[Crossref]

H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: fundamentals, challenges and prospects,” Appl. Energy 159, 560–575 (2015).
[Crossref]

Appl. Phys. Lett. (5)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).
[Crossref]

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Energy Convers. Manage. (1)

M. W. Yang, K. J. Chua, J. F. Pan, D. Y. Jiang, and H. An, “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Convers. Manage. 78, 81–87 (2014).
[Crossref]

IEEE Trans. Electron Devices (2)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, and S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron Devices 51, 512–515 (2004).
[Crossref]

T. J. Coutts and J. S. Ward, “Thermophotovoltaic and photovoltaic conversion at high-flux densities,” IEEE Trans. Electron Devices 46, 2145–2153 (1999).
[Crossref]

IEEE Trans. Semicond. Manuf. (1)

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manuf. 11, 30–39 (1998).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

J. Appl. Phys. (2)

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

J. Cryst. Growth (1)

J. G. Cederberg, J. D. Blaich, G. R. Girard, S. R. Lee, D. P. Nelson, and C. S. Murray, “The development of (InGa) As thermophotovoltaic cells on InP using strain-relaxed In (PAs) buffers,” J. Cryst. Growth 310, 3453–3458 (2008).
[Crossref]

J. Heat Transfer (1)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

J. Opt. (2)

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Satō, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[Crossref]

Nat. Commun. (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, and G. N. Parsons, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Opt. Commun. (1)

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Opt. Express (7)

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, and J. D. Joannopoulos, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

S. Molesky, C. W. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22, A1604–A1618 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
[Crossref]

Proc. IEEE (1)

B. D. Wedlock, “Thermo-photo-voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Prog. Energy Combust. Sci. (1)

Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci. 37, 669–715 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247–S253 (2003).
[Crossref]

Sol. Cells (1)

L. D. Woolf, “Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion,” Sol. Cells 19, 19–38 (1986).
[Crossref]

Solar Energy Mater. Solar Cells (2)

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Mater. Solar Cells 94, 509–514 (2010).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Solar Cells 122, 287–296 (2014).
[Crossref]

Other (5)

V. Ganapati, T. P. Xiao, and E. Yablonovitch, “Ultra-efficient thermophotovoltaics exploiting spectral filtering by the photovoltaic band-edge,” arXiv: 1611.03544 (2016).

P. Aigrain, “The thermophotovoltaic converter,” (1960) (unpublished lectures given at MIT).

L. M. Fraas, J. E. Samaras, X. H. Huang, L. M. Minkin, J. E. Avery, W. E. Daniels, and S. Hui, “TPV generators using the radiant tube burner configuration,” in 17th European PV Solar Energy Conference, Munich, Germany, Oct.22–26, 2001.

J. G. Cederberg, G. R. Girard, S. R. Lee, J. E. Strauch, and G. A. Ten Eyck, “Inverted monolithic interconnected module (MIM) thermo-photovoltaics (TPV) for remote power generation,” (SAND, 2008).

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaics: Heat and electric power from low bandgap “solar” cells around gas fired radiant tube burners,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1553–1556.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary figures and text

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Image of the selective emitter (SE) mounted on a water-chilled cartridge heater. SE die is 18  mm×18  mm. (b) SEM of metamaterial SE. Scale bar is 1 μm. (c) Experimental apparatus showing the emitter and heater housing mounted on a breadboard beneath a copper plate with a 10 mm diameter aperture cut out. A detector (either a TPM or a PV cell) is mounted to a vertically oriented breadboard by a linear translation stage. The entire setup is housed inside a vacuum chamber.
Fig. 2.
Fig. 2. (a) Geometry for view factor (VF) calculation, where h is the separation between the emitter and detector, hap is the height of the aperture above the emitter, tap is the thickness of the aperture, and demit and ddet are the diameters of the emitter and detector, respectively. (b) Power emitted by a blackbody (blue solid line) and the SE (green solid line), determined by dividing the measured power by VF, are plotted along the left vertical axis along with the blackbody power (dashed black line) as determined by the Stefan–Boltzmann Law. The ratio of the SE to the blackbody power is plotted along the right vertical axis (magenta line). (c) Power received by the selective emitter (circles) and power expected (squares) based on measured geometry and temperature for various values of h.
Fig. 3.
Fig. 3. (a) Image of PV cell. (b) IV curves taken for emitters at various temperatures. (c) Short circuit current (ISC) as continuously sampled (blue line) during the gradual increase of SE temperature, as taken from the IV curves shown in (b) (green squares), and as calculated based on our model (red dashed line), plotted against the left vertical axis. Thermal-to-electric conversion efficiency ηTPV (circles) is plotted along the right vertical axis.
Fig. 4.
Fig. 4. Spectral properties of the components of our TPV system. The emissivity of the SE (blue), transmissivity of the DF (gray dashed) and EQE of the PV cell (black) are all plotted along the left vertical axis. The blackbody spectral radiosity (green dashed) and photon flux (red dashed), normalized to qVOCFF, are plotted along the right vertical axis for a surface at 1055°C. The forward power transmitted by the SE–DF system is represented by the cyan shaded area. The power generated by the PV cell is represented by the magenta shaded area, and ηTPV is represented by the ratio of the two areas.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

VF=1AemitAemitdAemitAdetdF,
dF=cos2(θ)2πl20π/2sin(θ)cos(θ)dθdAdet,
PR(T)=PSE-DF(T)Pbb(T)
ηTPV(T)=Pout(T)Pin(T)=Pout(T)/APVPR(T)Pbb(T)
Si=0j=0k=0εTF[RF(1ε)]i[RFRPV]j[TF2RPV(1ε)]k,

Metrics