Abstract

The optical switches for single-mode operation cannot be directly utilized in optical communication and interconnect systems adopting mode-division multiplexing. In this paper, three general architectures for on-chip optical space and mode switching are proposed, which are optimized for optical space switching, optical space switching plus local optical mode switching, and global optical mode switching, respectively. A silicon thermo-optic 2×2 four-mode optical switch is demonstrated. The minimum and maximum optical link insertion losses are 16.0 and 20.9 dB (including 6  dB coupling loss), respectively, in the wavelength range of 1525–1565 nm, while the optical signal-to-noise ratios of the optical links are larger than 15.3 dB. The optical power penalty at a bit error rate of 109 varies from 1.0 to 5.6 dB for 40 Gbps data transmission through different optical links. This work provides a systematic solution to on-chip information switching for different physical and mode channels.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching

Ting Zhou, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, and Lin Yang
Opt. Express 26(7) 8375-8384 (2018)

Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip

Hao Jia, Ting Zhou, Lei Zhang, Jianfeng Ding, Xin Fu, and Lin Yang
Opt. Express 25(17) 20698-20707 (2017)

Four-port mode-selective silicon optical router for on-chip optical interconnect

Hao Jia, Ting Zhou, Xin Fu, Jianfeng Ding, Lei Zhang, and Lin Yang
Opt. Express 26(8) 9740-9748 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
    [Crossref]
  2. A. Chraplyvy, “The coming capacity crunch, plenary talk,” in European Conference on Optical Communications (ECOC), Vienna, Austria (2009).
  3. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
    [Crossref]
  4. D. Dimitropoulos and B. Jalali, “Noise and information capacity in silicon nanophotonics,” IEEE Photonics J. 7, 1–20 (2015).
    [Crossref]
  5. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100, 1035–1055 (2012).
    [Crossref]
  6. P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photon. News 26(3), 28–35 (2015).
    [Crossref]
  7. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
    [Crossref]
  8. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  9. K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
    [Crossref]
  10. K. P. Ho and J. M. Kahn, “Delay-spread distribution for multimode fiber with strong mode coupling,” IEEE Photonics Technol. Lett. 24, 1906–1909 (2012).
    [Crossref]
  11. A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-division multiplexed high-speed superchannel transmission over few-mode fiber,” J. Lightwave Technol. 30, 3953–3964 (2012).
    [Crossref]
  12. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
    [Crossref]
  13. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  14. N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.
  15. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
    [Crossref]
  16. K. P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32, 614–628 (2014).
    [Crossref]
  17. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22, 1036–1044 (2014).
    [Crossref]
  18. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32, 2824–2829 (2014).
    [Crossref]
  19. R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
    [Crossref]
  20. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22, 22172–22183 (2014).
    [Crossref]
  21. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
    [Crossref]
  22. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701–1702 (2002).
    [Crossref]
  23. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
    [Crossref]
  24. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
    [Crossref]
  25. C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.
  26. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in 6th IEEE International Conference on Group IV Photonics, GFP’09 (IEEE, 2009), pp. 166–168.
  27. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [Crossref]
  28. J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
    [Crossref]
  29. Y. Sun, Y. Xiong, and W. N. Ye, “Experimental demonstration of a two-mode (de) multiplexer based on a taper-etched directional coupler,” Opt. Lett. 41, 3743–3746 (2016).
    [Crossref]
  30. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21, 17904–17911 (2013).
    [Crossref]
  31. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref]
  32. M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23, 32130–32138 (2015).
    [Crossref]
  33. H. Xu and Y. Shi, “Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers,” Opt. Lett. 41, 5381–5384 (2016).
    [Crossref]
  34. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref]
  35. V. E. Beneš, “Algebraic and topological properties of connecting networks,” Bell Labs Tech. J. 41, 1249–1274 (1962).
    [Crossref]
  36. R. A. Spanke and V. E. Beneš, “N-stage planar optical permutation network,” Appl. Opt. 26, 1226–1229 (1987).
    [Crossref]
  37. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
    [Crossref]
  38. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [Crossref]
  39. A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.
  40. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
    [Crossref]
  41. R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, “A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip,” J. Lightwave Technol. 30, 3736–3741 (2012).
    [Crossref]
  42. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
    [Crossref]
  43. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
    [Crossref]
  44. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19, 20258–20268 (2011).
    [Crossref]
  45. R. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25, 492–495 (2013).
    [Crossref]
  46. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref]
  47. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
    [Crossref]
  48. Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.
  49. H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, and L. Yang, “Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip,” Opt. Express 25, 20698–20707 (2017).
    [Crossref]
  50. Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
    [Crossref]
  51. S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42, 2802–2805 (2017).
    [Crossref]
  52. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
    [Crossref]
  53. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
    [Crossref]
  54. L. Jia, J. Song, T. Y. Liow, X. Luo, X. Tu, Q. Fang, S. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22, 23652–23660 (2014).
    [Crossref]

2017 (3)

2016 (2)

2015 (5)

2014 (10)

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22, 1036–1044 (2014).
[Crossref]

K. P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32, 614–628 (2014).
[Crossref]

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32, 2824–2829 (2014).
[Crossref]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22, 22172–22183 (2014).
[Crossref]

L. Jia, J. Song, T. Y. Liow, X. Luo, X. Tu, Q. Fang, S. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22, 23652–23660 (2014).
[Crossref]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
[Crossref]

2013 (5)

2012 (7)

K. P. Ho and J. M. Kahn, “Delay-spread distribution for multimode fiber with strong mode coupling,” IEEE Photonics Technol. Lett. 24, 1906–1909 (2012).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100, 1035–1055 (2012).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
[Crossref]

R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, “A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip,” J. Lightwave Technol. 30, 3736–3741 (2012).
[Crossref]

A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-division multiplexed high-speed superchannel transmission over few-mode fiber,” J. Lightwave Technol. 30, 3953–3964 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

2008 (3)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

2006 (1)

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

2005 (1)

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701–1702 (2002).
[Crossref]

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[Crossref]

1987 (1)

1980 (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
[Crossref]

1962 (1)

V. E. Beneš, “Algebraic and topological properties of connecting networks,” Bell Labs Tech. J. 41, 1249–1274 (1962).
[Crossref]

Al Amin, A.

Amaya, N.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Arrioja, D. M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Assefa, S.

Awaji, Y.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in 6th IEEE International Conference on Group IV Photonics, GFP’09 (IEEE, 2009), pp. 166–168.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Beamer, S.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Beneš, V. E.

R. A. Spanke and V. E. Beneš, “N-stage planar optical permutation network,” Appl. Opt. 26, 1226–1229 (1987).
[Crossref]

V. E. Beneš, “Algebraic and topological properties of connecting networks,” Bell Labs Tech. J. 41, 1249–1274 (1962).
[Crossref]

Bergman, K.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Biberman, A.

Bigot-Astruc, M.

Bland-Hawthorn, J.

Cardenas, J.

Channegowda, M.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Chen, G.

Chen, H.

Chen, L.

Chen, M. Y.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

Chen, Q.

Chen, R. T.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

Chen, X.

Chraplyvy, A.

A. Chraplyvy, “The coming capacity crunch, plenary talk,” in European Conference on Optical Communications (ECOC), Vienna, Austria (2009).

Cong, G.

Correa, R. A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Da Ros, F.

Dadap, J. I.

Dai, D.

S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42, 2802–2805 (2017).
[Crossref]

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Dai, T.

de Waardt, H.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Dimitropoulos, D.

D. Dimitropoulos and B. Jalali, “Noise and information capacity in silicon nanophotonics,” IEEE Photonics J. 7, 1–20 (2015).
[Crossref]

Ding, J.

Ding, Y.

Doany, F. E.

Driscoll, J. B.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Ercan, B.

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100, 1035–1055 (2012).
[Crossref]

Fang, Q.

Feng, X.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Fontaine, N. K.

Fu, X.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

Gao, S.

Green, W. M. J.

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in 6th IEEE International Conference on Group IV Photonics, GFP’09 (IEEE, 2009), pp. 166–168.

Greenberg, M.

Grote, R. R.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Harai, H.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

He, S.

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

He, Y.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Ho, K. P.

K. P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32, 614–628 (2014).
[Crossref]

K. P. Ho and J. M. Kahn, “Delay-spread distribution for multimode fiber with strong mode coupling,” IEEE Photonics Technol. Lett. 24, 1906–1909 (2012).
[Crossref]

Holzwarth, C. W.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Howley, B.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

Hoyt, J. L.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Hu, T.

Huang, B.

Huang, Y. Z.

Huijskens, F. M.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Ikeda, K.

Ishizaka, Y.

Jahnes, C. V.

Jalali, B.

D. Dimitropoulos and B. Jalali, “Noise and information capacity in silicon nanophotonics,” IEEE Photonics J. 7, 1–20 (2015).
[Crossref]

Ji, R.

Jia, H.

Jia, L.

Jiang, G.

Jiang, X.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Kahn, J. M.

K. P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32, 614–628 (2014).
[Crossref]

K. P. Ho and J. M. Kahn, “Delay-spread distribution for multimode fiber with strong mode coupling,” IEEE Photonics Technol. Lett. 24, 1906–1909 (2012).
[Crossref]

Kartner, F. X.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Kash, J. A.

Kawaguchi, Y.

Kawashima, H.

Khilo, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Kimura, T.

Kitayama, K.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
[Crossref]

Klaus, W.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Koh, S.

Koonen, A. M. J.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Koshiba, M.

Koshino, K.

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Kwon, Y. J.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Kwong, D. L.

Lee, B. G.

Leon-Saval, S. G.

Li, A.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
[Crossref]

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Li, H.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Li, Y.

Liboiron-Ladouceur, O.

Liñares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Liow, T. Y.

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

Lo, G.

Lo, G. Q.

Lopez, E. A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Lu, M.

Lu, Y.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Luo, X.

Luo, Y.

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Matsumaro, K.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Min, R.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[Crossref]

Miyazawa, T.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Molin, D.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Moss, B.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Namiki, S.

Nejabati, R.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Ohtsuka, M.

Okonkwo, C. M.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Orcutt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Orenstein, M.

Osgood, R. M.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
[Crossref]

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

Ou, H.

Ou, Y.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Peucheret, C.

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Poon, A. W.

Popovic, M. A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Priti, R. B.

Puttnam, B. J.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Qiu, C.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Qiu, H.

Ram, R. J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Rashidi, M.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Richardson, M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Rofoee, B. R.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Ryf, R.

Saitoh, K.

Sakaguchi, J.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Salazar-Gil, J. R.

Schow, C. L.

Schulzgen, A.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Schülzgen, A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Seikai, S.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
[Crossref]

Seki, M.

Shamim, I.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Shao, H.

Sherwood-Droz, N.

Shi, Y.

Shieh, W.

Shu, Y.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Sillard, P.

Simeonidou, D.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Smith, H. I.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Song, J.

Song, J. F.

Soref, R.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Souhan, B.

Spanke, R. A.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[Crossref]

Stern, B.

Stojanovic, V.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Su, Y.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Suda, S.

Sugaya, T.

Sun, Y.

Suzuki, K.

Tan, C. W.

Tanizawa, K.

Tian, Y.

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100, 1035–1055 (2012).
[Crossref]

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
[Crossref]

Toyama, M.

Tsang, H.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701–1702 (2002).
[Crossref]

Tu, X.

Tzuang, L. D.

Uchida, N.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
[Crossref]

Uematsu, T.

Van Campenhout, J.

Van Uden, R. G. H.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Vlasov, Y. A.

Wang, H.

Wang, J.

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Wang, S.

Wang, S. Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Wang, X.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Winzer, P. J.

P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photon. News 26(3), 28–35 (2015).
[Crossref]

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
[Crossref]

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Xiong, Y.

Xu, H.

Xu, J.

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref]

R. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25, 492–495 (2013).
[Crossref]

Yan, S.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Yang, J.

Yang, L.

Yang, M.

Yang, Y. D.

Ye, J.

Ye, M.

Ye, W. N.

Yokoyama, N.

Yu, H.

Yu, M.

Yu, M. B.

Yu, P.

Yu, Y.

Zervas, G.

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

Zhang, L.

Zhang, X.

Zhang, Y.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Zhao, N.

Zhou, P.

Zhou, T.

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

Zhu, Q.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Zhu, W.

Zhu, X.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Bell Labs Tech. J. (2)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
[Crossref]

V. E. Beneš, “Algebraic and topological properties of connecting networks,” Bell Labs Tech. J. 41, 1249–1274 (1962).
[Crossref]

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701–1702 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16, 356–362 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 × 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12, 997–1000 (2006).
[Crossref]

IEEE Micro (1)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

IEEE Photonics J. (1)

D. Dimitropoulos and B. Jalali, “Noise and information capacity in silicon nanophotonics,” IEEE Photonics J. 7, 1–20 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. P. Ho and J. M. Kahn, “Delay-spread distribution for multimode fiber with strong mode coupling,” IEEE Photonics Technol. Lett. 24, 1906–1909 (2012).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24, 1914–1917 (2012).
[Crossref]

R. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25, 492–495 (2013).
[Crossref]

J. Lightwave Technol. (5)

Laser Photon. Rev. (1)

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Nat. Commun. (2)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref]

Nat. Photonics (3)

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[Crossref]

Opt. Express (13)

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21, 17904–17911 (2013).
[Crossref]

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22, 1036–1044 (2014).
[Crossref]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
[Crossref]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19, 20258–20268 (2011).
[Crossref]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22, 22172–22183 (2014).
[Crossref]

L. Jia, J. Song, T. Y. Liow, X. Luo, X. Tu, Q. Fang, S. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22, 23652–23660 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref]

M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23, 32130–32138 (2015).
[Crossref]

H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, and L. Yang, “Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip,” Opt. Express 25, 20698–20707 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Photon. News (1)

P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photon. News 26(3), 28–35 (2015).
[Crossref]

Optica (2)

Proc. IEEE (3)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100, 1035–1055 (2012).
[Crossref]

Other (6)

A. Chraplyvy, “The coming capacity crunch, plenary talk,” in European Conference on Optical Communications (ECOC), Vienna, Austria (2009).

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, and H. Harai, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in 39th European Conference and Exhibition on Optical Communication ECOC (IET, 2013), pp. 1–3.

C. P. Chen, J. B. Driscoll, N. Ophir, R. R. Grote, R. M. Osgood, and K. Bergman, “First demonstration of polarization-multiplexing combined with on-chip mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th4A. 3.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in 6th IEEE International Conference on Group IV Photonics, GFP’09 (IEEE, 2009), pp. 166–168.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE, 2009), pp. 124–133.

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1× 2 mode-and polarization-selective switch,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematics of the type-I N×N multimode optical switch (M-DEMUX, mode de-multiplexer; M-MUX, mode multiplexer; SM-OS, single-mode optical switch).
Fig. 2.
Fig. 2. Schematics of the type-II N×N multimode optical switch.
Fig. 3.
Fig. 3. Schematics of the type-III N×N multimode optical switch.
Fig. 4.
Fig. 4. (a) Schematics and (b) micrograph of a type-III 2×2 four-mode optical switch.
Fig. 5.
Fig. 5. Experimental setup for characterizing the device (ASE, amplified spontaneous emission; TL, tunable laser; PC, polarization controller; DCP, direct-current power; AFG, arbitrary function generator; DUT, device under test; PPG, pulse pattern generator; OSA, optical spectrum analyzer; DCA, digital communication analyzer; EDFA, erbium-doped fiber amplifier; MD, modulator; RTO, real-time oscilloscope).
Fig. 6.
Fig. 6. (a) Established optical links and states of the switch units in a specific routing state, (b) transmission spectra of the optical links ImiO11 (m=1, 2 and i=0, 1, 2, 3) and the silicon waveguide, and (c) transmission spectra for the signals and noises of the optical links in the shown routing state (OSNR: optical signal-to-noise ratio).
Fig. 7.
Fig. 7. (a) Established optical links and states of the switch units in a specific routing state. (b) Transmission spectra for the signal and noise of the optical links in the shown routing state.
Fig. 8.
Fig. 8. (a) Established optical links and states of the single-mode optical switches in a specific routing state. (b) Transmission spectra for the signal and noise of the optical links in the shown routing state.
Fig. 9.
Fig. 9. Eye diagrams and bit error rates for 40 Gbps data transmission through the optical links for (a) optical space switching, (b) optical space switching plus local optical mode switching, and (c) global optical mode switching.

Tables (3)

Tables Icon

Table 1. Insertion Losses and Optical Signal-to-Noise Ratios of the Optical Links of the Type-III 2×2 Four-Mode Optical Switch

Tables Icon

Table 2. Insertion Losses and Optical Signal-to-Noise Ratios of the Optical Links of the Type-III 2×2 Four-Mode Optical Switch

Tables Icon

Table 3. Insertion Losses and Optical Signal-to-Noise Ratios of the Optical Links of the Type-III 2×2 Four-Mode Optical Switch

Metrics