Abstract

Phase-imaging techniques extract the optical path length information of a scene, whereas wavefront sensors provide the shape of an optical wavefront. Since these two applications have different technical requirements, they have developed their own specific technologies. Here we show how to perform phase imaging combining wavefront sampling using a reconfigurable spatial light modulator with a beam position detector. The result is a time-multiplexed detection scheme, capable of being shortened considerably by compressive sensing. This robust referenceless method does not require the phase-unwrapping algorithms demanded by conventional interferometry, and its lenslet-free nature removes trade-offs usually found in Shack–Hartmann sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering

Shuai Wang, Ping Yang, Bing Xu, Lizhi Dong, and Mingwu Ao
Opt. Express 23(4) 5052-5064 (2015)

Wavefront reconstruction by spatial-phase-shift imaging interferometry

Shay Wolfling, Emmanuel Lanzmann, Nissim Ben-Yosef, and Yoel Arieli
Appl. Opt. 45(12) 2586-2596 (2006)

Spatial frequency sampling by phase modulation as a method of generating multiple images

A. Kalestynski and B. Smolinska
Appl. Opt. 16(8) 2261-2263 (1977)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
    [Crossref]
  2. G. Popescu, “The power of imaging with phase, not power,” Phys. Today 70(5), 34–40 (2017).
    [Crossref]
  3. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  4. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
    [Crossref]
  5. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
    [Crossref]
  6. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
    [Crossref]
  7. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.
  8. R. Tyson, Principles of Adaptive Optics, Series in Optics and Optoelectronics, 3rd ed. (CRC Press, 2010), Vol. 20102628.
  9. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
    [Crossref]
  10. N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14, 374–380 (2017).
    [Crossref]
  11. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
    [Crossref]
  12. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
    [Crossref]
  13. Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
    [Crossref]
  14. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  15. H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
    [Crossref]
  16. R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imaging with a coded aperture,” Opt. Lett. 39, 6466–6469 (2014).
    [Crossref]
  17. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
    [Crossref]
  18. R. Horisaki, R. Egami, and J. Tanida, “Single-shot phase imaging with randomized light (SPIRaL),” Opt. Express 24, 3765–3773 (2016).
    [Crossref]
  19. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref]
  20. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
    [Crossref]
  21. J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
    [Crossref]
  22. P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
    [Crossref]
  23. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
  24. B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
    [Crossref]
  25. R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
    [Crossref]
  26. D. Dayton, J. Gonglewski, B. Pierson, and B. Spielbusch, “Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor,” Opt. Lett. 17, 1737–1739 (1992).
    [Crossref]
  27. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18, 16685–16701 (2010).
    [Crossref]
  28. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
    [Crossref]
  29. Y. Saita, H. Shinto, and T. Nomura, “Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range,” Optica 2, 411–415 (2015).
    [Crossref]
  30. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
    [Crossref]
  31. J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998).
    [Crossref]
  32. S. Wang, P. Yang, B. Xu, L. Dong, and M. Ao, “Shack–Hartmann wavefront sensing based on binary-aberration-mode filtering,” Opt. Express 23, 5052–5063 (2015).
    [Crossref]
  33. R. Martínez-Cuenca, V. Durán, V. Climent, E. Tajahuerce, S. Bará, J. Ares, J. Arines, M. Martínez-Corral, and J. Lancis, “Reconfigurable Shack–Hartmann sensor without moving elements,” Opt. Lett. 35, 1338–1340 (2010).
    [Crossref]
  34. T. Godin, M. Fromager, E. Cagniot, M. Brunel, and K. Aït-Ameur, “Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors,” Appl. Opt. 52, 8310–8317 (2013).
    [Crossref]
  35. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
    [Crossref]
  36. S. Olivier, V. Laude, and J. Huignard, “Liquid-crystal Hartmann wave-front scanner,” Appl. Opt. 39, 3838–3846 (2000).
    [Crossref]
  37. J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44, 1559–1571 (2005).
    [Crossref]
  38. “Phasics,” http://phasicscorp.com .
  39. I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36, 3636–3638 (2011).
    [Crossref]
  40. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
    [Crossref]
  41. I. Iglesias and F. Vargas-Martin, “Quantitative phase microscopy of transparent samples using a liquid crystal display,” J. Biomed. Opt. 18, 026015 (2013).
    [Crossref]
  42. H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Opt. Express 24, 25345–25361 (2016).
    [Crossref]
  43. E. J. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
    [Crossref]
  44. M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  45. H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, “Holographic imaging with a Shack–Hartmann wavefront sensor,” Opt. Express 24, 13729–13737 (2016).
    [Crossref]
  46. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
    [Crossref]
  47. P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
    [Crossref]
  48. S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013).
    [Crossref]
  49. S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
    [Crossref]
  50. G. Vdovin, H. Gong, O. Soloviev, P. Pozzi, and M. Verhaegen, “Lensless coherent imaging by sampling of the optical field with digital micromirror device,” J. Opt. 17, 122001 (2015).
    [Crossref]
  51. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).
    [Crossref]
  52. R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack–Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25, 1680–1691 (2017).
    [Crossref]
  53. M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photon. 7, 241–275 (2015).
    [Crossref]
  54. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  55. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
    [Crossref]
  56. L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
    [Crossref]
  57. P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency projections,” Methods (2017), in press.
    [Crossref]
  58. F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
    [Crossref]
  59. F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
    [Crossref]
  60. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
    [Crossref]
  61. V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
    [Crossref]
  62. P. R. Griffiths, H. J. Sloane, and R. W. Hannah, “Interferometers vs monochromators: separating the optical and digital advantages,” Appl. Spectrosc. 31, 485–495 (1977).
    [Crossref]
  63. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
    [Crossref]
  64. M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
    [Crossref]
  65. W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
    [Crossref]
  66. E. Candès and J. Romberg, “l1-magic: recovery of sparse signals via convex programming,” https://www.cs.bham.ac.uk/~axk/Sakinah/inspiring_readings/l1magic.pdf .
  67. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056–1059 (2016).
    [Crossref]
  68. Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM),” Opt. Express 18, 24565–24578 (2010).
    [Crossref]
  69. H. Gong, T. E. Agbana, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, “Optical path difference microscopy with a Shack–Hartmann wavefront sensor,” Opt. Lett. 42, 2122–2125 (2017).
    [Crossref]
  70. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref]
  71. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref]
  72. E. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (European Mathematical Society, 2006), pp. 1433–1452.
  73. F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
    [Crossref]
  74. H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24, 26080–26096 (2016).
    [Crossref]
  75. N. Radwell, K. J. Mitchell, G. GIbson, M. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
    [Crossref]
  76. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 14–20 (2008).
    [Crossref]
  77. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref]
  78. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]

2017 (5)

2016 (7)

2015 (9)

G. Vdovin, H. Gong, O. Soloviev, P. Pozzi, and M. Verhaegen, “Lensless coherent imaging by sampling of the optical field with digital micromirror device,” J. Opt. 17, 122001 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
[Crossref]

S. Wang, P. Yang, B. Xu, L. Dong, and M. Ao, “Shack–Hartmann wavefront sensing based on binary-aberration-mode filtering,” Opt. Express 23, 5052–5063 (2015).
[Crossref]

Y. Saita, H. Shinto, and T. Nomura, “Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range,” Optica 2, 411–415 (2015).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photon. 7, 241–275 (2015).
[Crossref]

2014 (11)

S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
[Crossref]

P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
[Crossref]

N. Radwell, K. J. Mitchell, G. GIbson, M. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imaging with a coded aperture,” Opt. Lett. 39, 6466–6469 (2014).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

2013 (9)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

I. Iglesias and F. Vargas-Martin, “Quantitative phase microscopy of transparent samples using a liquid crystal display,” J. Biomed. Opt. 18, 026015 (2013).
[Crossref]

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013).
[Crossref]

T. Godin, M. Fromager, E. Cagniot, M. Brunel, and K. Aït-Ameur, “Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors,” Appl. Opt. 52, 8310–8317 (2013).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[Crossref]

2012 (4)

2011 (2)

2010 (4)

2008 (3)

E. J. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 14–20 (2008).
[Crossref]

2007 (1)

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[Crossref]

2006 (1)

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

2005 (1)

2003 (1)

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[Crossref]

2002 (1)

R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[Crossref]

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

2000 (1)

1999 (1)

1998 (1)

1997 (1)

1994 (1)

1992 (1)

1984 (1)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

1980 (1)

1977 (1)

1969 (1)

W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref]

1949 (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[Crossref]

Agbana, T. E.

Aino, M.

Aït-Ameur, K.

Allende Motz, A. M.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Andrés, P.

Andrews, H.

W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Ao, M.

Arce, G. R.

Ares, J.

Arines, J.

Artal, P.

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Banerjee, P. P.

Bará, S.

Baraniuk, R. G.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Bartels, R. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency projections,” Methods (2017), in press.
[Crossref]

Bell, J. E. C.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Bhaduri, B.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

Bille, J. F.

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

Bowman, R.

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Bradley, J.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Brunel, M.

Buczynski, R.

Cagniot, E.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Candes, E. J. J.

E. J. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

Candès, E.

E. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (European Mathematical Society, 2006), pp. 1433–1452.

Caravaca-Aguirre, A. M.

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Chanteloup, J.-C.

Chapman, H. N.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Charpak, S.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

Chen, Q.

Chowdhury, S.

Chu, K. K.

Chung, J.

Clemente, P.

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Climent, V.

Cohen, O.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

Conkey, D. B.

Cui, X.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Dai, H.

Davenport, M. A. A.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Dayton, D.

de Sars, V.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

DeLuca, J. G.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

DeLuca, K. F.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Ding, H.

Domingue, S. R.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Dong, L.

Drexler, W.

Duarte, M. F. F.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Ducros, M.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

Durán, V.

Edgar, M.

Egami, R.

Eldar, Y. C.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

Eluru, G.

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Fernández-Alonso, M.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Field, J. J.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency projections,” Methods (2017), in press.
[Crossref]

Filipkowski, A.

Ford, T. N.

Fromager, M.

Fusco, T.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[Crossref]

Gambín, A.

Gao, P.

GIbson, G.

Gillette, M. U.

Godin, T.

Goelz, S.

Gong, H.

Gonglewski, J.

Gorthi, S. S.

Goulam Houssen, Y.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

Griffiths, P. R.

Grimm, B.

Gu, G.

Hannah, R. W.

He, W.

Horisaki, R.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Hradil, Z.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Huignard, J.

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Iglesias, I.

I. Iglesias and F. Vargas-Martin, “Quantitative phase microscopy of transparent samples using a liquid crystal display,” J. Biomed. Opt. 18, 026015 (2013).
[Crossref]

I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36, 3636–3638 (2011).
[Crossref]

Irles, E.

Izatt, J.

Ji, N.

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14, 374–380 (2017).
[Crossref]

Kane, J.

W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Kasztelanic, R.

Kelly, K. F. F.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Kumar, A.

Lancis, J.

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref]

B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056–1059 (2016).
[Crossref]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

R. Martínez-Cuenca, V. Durán, V. Climent, E. Tajahuerce, S. Bará, J. Ares, J. Arines, M. Martínez-Corral, and J. Lancis, “Reconfigurable Shack–Hartmann sensor without moving elements,” Opt. Lett. 35, 1338–1340 (2010).
[Crossref]

Laska, J. N. N.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Laude, V.

Leitgeb, R. A.

Levi, D. H.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Li, X.

Liang, J.

Liesener, J.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[Crossref]

Lindlein, N.

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Lochocki, B.

Lu, H.

Manzanera, S.

Mao, T.

Martínez-Corral, M.

Martínez-Cuenca, R.

Martínez-León, L.

Mertz, J.

Miao, J.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

Michau, V.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Millet, L.

Mir, M.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

Mirza, I. O.

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Mitchell, K. J.

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Moreno-Barriuso, E.

Mori, Y.

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Motka, L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Navarro, R.

Nehmetallah, G.

Nicolle, M.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Nomura, T.

Nugent, K. A.

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Ogura, Y.

Olivier, S.

Osten, W.

Ou, X.

Padgett, M. J.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

N. Radwell, K. J. Mitchell, G. GIbson, M. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Parthasarathy, A. B.

Pedrini, G.

Pfund, J.

Pierson, B.

Piestun, R.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Popescu, G.

G. Popescu, “The power of imaging with phase, not power,” Phys. Today 70(5), 34–40 (2017).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

Pozzi, P.

Prather, D. W.

Pratt, W.

W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Pysz, D.

Radwell, N.

Ramchandran, K.

Rehacek, J.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Ren, J.

Rogers, J.

Romberg, J.

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 14–20 (2008).
[Crossref]

Rousset, G.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Saita, Y.

Salvador-Balaguer, E.

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

Sánchez-Soto, L. L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Saxena, M.

Schwider, J.

Segev, M.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

Seifert, L.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[Crossref]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Shechtman, Y.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

Shinto, H.

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sloane, H. J.

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Soldevila, F.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Soloviev, O.

Southwell, W. H.

Spielbusch, B.

Squier, J. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Stepien, R.

Stockton, P. A.

P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency projections,” Methods (2017), in press.
[Crossref]

Stoklasa, B.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Streibl, N.

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Taghizadeh, M. R.

Tajahuerce, E.

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056–1059 (2016).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

R. Martínez-Cuenca, V. Durán, V. Climent, E. Tajahuerce, S. Bará, J. Ares, J. Arines, M. Martínez-Corral, and J. Lancis, “Reconfigurable Shack–Hartmann sensor without moving elements,” Opt. Lett. 35, 1338–1340 (2010).
[Crossref]

Takhar, D.

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tanida, J.

Tearney, G. J.

Thomas, S.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Tian, L.

Tiziani, H. J.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[Crossref]

Tokovinin, A.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Tyson, R.

R. Tyson, Principles of Adaptive Optics, Series in Optics and Optoelectronics, 3rd ed. (CRC Press, 2010), Vol. 20102628.

Unarunotai, S.

Uribe-Patarroyo, N.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

Vargas-Martin, F.

I. Iglesias and F. Vargas-Martin, “Quantitative phase microscopy of transparent samples using a liquid crystal display,” J. Biomed. Opt. 18, 026015 (2013).
[Crossref]

Vdovin, G.

Verhaegen, M.

Waddie, A. J.

Wakin, M. B.

E. J. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

Waller, L.

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

Wang, S.

Wang, Z.

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Wernsing, K. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Wilding, D.

Wilson, R. W.

R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[Crossref]

Wu, Y.

Xu, B.

Yamaguchi, I.

Yang, C.

Yang, P.

Ye, L.

Ye, P.

Young, M. D.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref]

Zhang, F.

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[Crossref]

Zhang, T.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

Zuo, C.

Adv. Opt. Photon. (3)

Appl. Opt. (3)

Appl. Phys. B (1)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

IEEE Signal Process. Mag. (4)

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 14–20 (2008).
[Crossref]

E. J. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

M. F. F. Duarte, M. A. A. Davenport, D. Takhar, J. N. N. Laska, K. F. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]

J. Biomed. Opt. (1)

I. Iglesias and F. Vargas-Martin, “Quantitative phase microscopy of transparent samples using a liquid crystal display,” J. Biomed. Opt. 18, 026015 (2013).
[Crossref]

J. Opt. (1)

G. Vdovin, H. Gong, O. Soloviev, P. Pozzi, and M. Verhaegen, “Lensless coherent imaging by sampling of the optical field with digital micromirror device,” J. Opt. 17, 122001 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

Mon. Not. R. Astron. Soc. (2)

R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[Crossref]

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
[Crossref]

Nat. Commun. (2)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref]

Nat. Methods (2)

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14, 374–380 (2017).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 625–628 (2014).
[Crossref]

Nat. Photonics (3)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Opt. Commun. (2)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[Crossref]

Opt. Express (14)

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref]

X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18, 16685–16701 (2010).
[Crossref]

Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM),” Opt. Express 18, 24565–24578 (2010).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

R. Horisaki, R. Egami, and J. Tanida, “Single-shot phase imaging with randomized light (SPIRaL),” Opt. Express 24, 3765–3773 (2016).
[Crossref]

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, “Holographic imaging with a Shack–Hartmann wavefront sensor,” Opt. Express 24, 13729–13737 (2016).
[Crossref]

H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Opt. Express 24, 25345–25361 (2016).
[Crossref]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24, 26080–26096 (2016).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack–Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25, 1680–1691 (2017).
[Crossref]

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref]

S. Wang, P. Yang, B. Xu, L. Dong, and M. Ao, “Shack–Hartmann wavefront sensing based on binary-aberration-mode filtering,” Opt. Express 23, 5052–5063 (2015).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

Opt. Lett. (13)

H. Gong, T. E. Agbana, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, “Optical path difference microscopy with a Shack–Hartmann wavefront sensor,” Opt. Lett. 42, 2122–2125 (2017).
[Crossref]

R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imaging with a coded aperture,” Opt. Lett. 39, 6466–6469 (2014).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[Crossref]

S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
[Crossref]

P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
[Crossref]

I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36, 3636–3638 (2011).
[Crossref]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

D. Dayton, J. Gonglewski, B. Pierson, and B. Spielbusch, “Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor,” Opt. Lett. 17, 1737–1739 (1992).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]

J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998).
[Crossref]

R. Martínez-Cuenca, V. Durán, V. Climent, E. Tajahuerce, S. Bará, J. Ares, J. Arines, M. Martínez-Corral, and J. Lancis, “Reconfigurable Shack–Hartmann sensor without moving elements,” Opt. Lett. 35, 1338–1340 (2010).
[Crossref]

R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[Crossref]

Optica (4)

Phys. Rev. A (1)

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[Crossref]

Phys. Today (1)

G. Popescu, “The power of imaging with phase, not power,” Phys. Today 70(5), 34–40 (2017).
[Crossref]

Proc. IEEE (1)

W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Proc. Natl. Acad. Sci. USA (3)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. USA 110, 13138–13143 (2013).
[Crossref]

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. USA 113, 6605–6610 (2016).
[Crossref]

Proc. R. Soc. A (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[Crossref]

Sci. Rep. (2)

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref]

Other (6)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics (Elsevier, 2012), Vol. 57, pp. 133–217.

R. Tyson, Principles of Adaptive Optics, Series in Optics and Optoelectronics, 3rd ed. (CRC Press, 2010), Vol. 20102628.

P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency projections,” Methods (2017), in press.
[Crossref]

“Phasics,” http://phasicscorp.com .

E. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (European Mathematical Society, 2006), pp. 1433–1452.

E. Candès and J. Romberg, “l1-magic: recovery of sparse signals via convex programming,” https://www.cs.bham.ac.uk/~axk/Sakinah/inspiring_readings/l1magic.pdf .

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Complex amplitude retrieval using spatial wavefront sampling compared to current imaging and wavefront sensing techniques. (a) In a conventional imaging system, the phase information carried by the light coming from an object (for example, a biological sample) is completely lost, as the object image is formed onto a detector that simply measures the light irradiance. (b) Digital holography captures the interference between the light coming from the object and a reference beam, allowing one to retrieve the complex amplitude of the object from irradiance measurements. (c) Shack–Hartmann sensors measure the displacements of different foci generated by an array of lenslets. From those displacements, the wavefront impinging onto the lenslet plane can be reconstructed, providing information about the phase variations introduced by the object. (d) Our technique uses a sequence of illumination amplitude patterns and a single focusing lens. The object’s complex amplitude can be obtained from the statistical properties of the irradiance distribution measured in the Fourier plane of the lens. The same operation principle can be applied if, instead of the configuration shown in the figure, the light coming from an object is modulated by a set of patterns generated on a spatial light modulator (SLM).
Fig. 2.
Fig. 2. Operation principle of different wavefront sensing approaches. (a) Shack–Hartmann wavefront sensing. A wavefront coming from an object passes through an array of lenslets, which produce a distribution of focal spots on the detector. The position of each spot is linked to the local slope of the wavefront on every lenslet. Numerical integration of the slope data provides the phase of the wavefront. (b) Raster scanning wavefront sensing. A small amplitude aperture is moved over the wavefront plane and, for each consecutive scanning position, the Fourier distribution of the emerging light is recorded. The total irradiance of that distribution at each aperture position can be used to recover the amplitude image of the object. Additionally, the centroid relative location of each Fourier distribution provides the local slope of the wavefront at each scanning position, which allows one to obtain the phase image of the object. (c) Spatial wavefront sampling. Instead of using a small scanning aperture, the wavefront coming from the object is sampled by a set of amplitude masks (reconstruction basis). Now, from the irradiance of each Fourier distribution generated on the detector plane, one can measure the mathematical projection of the object amplitude into the reconstruction basis. By demultiplexing that information, the object amplitude is spatially resolved. In the same way, demultiplexing the data concerning the centroid locations provides the slope map of the wavefront and then, after numerical integration, the object phase image.
Fig. 3.
Fig. 3. Experimental verification of the proposed technique. (a) Schematics of the system. Captions: LS, laser source; L1, L2, and L3, lenses; OBJ, object; CL, condensing lens; PD, position detector. (b) Image of the detector used in our experiments. It includes four electrodes connected to a metallic surface, whose voltage measurements provide both the irradiance of the light beam and the position of its centroid. (c) Experimental results for a plate simulating a coma aberration. As the sample is transparent, the amplitude image provides no information about the object. In the phase image, the object information is clearly recovered. (d) 3D view of the recovered phase.
Fig. 4.
Fig. 4. Reconstruction of a spherical wavefront and comparison with a commercial Shack–Hartmann sensor. (a) Caption of the lens used as a phase object. (b) Spot map generated by the SH lenslet array. By comparing the position of each spot to a reference value, the spot displacements can be calculated. From those data, a 3D view of the phase can be recovered. (c) Wrapped phase of the lens. (d). Small region of the full displacement map for our system. Those displacements can be related to the gradient of the phase. Numerical integration of those gradients provides the phase of the object, and after decomposition in the Zernike basis, a high-resolution 3D view of the phase can be displayed (plot on the right). (e) Wrapped phase of the lens obtained using the proposed technique.
Fig. 5.
Fig. 5. High dynamic-range measurement and comparison with a commercial SH sensor. In the top row, we show the wrapped phase measured with the aid of a SH sensor when the lens shown in Fig. 4(a) is placed in an off-axis position. The maximum phase gradient measurable by the commercial sensor is 100λ. A zoomed region, marked in red, is shown in the right part of the figure. In the bottom row, we show the results for the same object obtained with the system shown in Fig. 3(a). In this case, the lens has been displaced a bigger distance from the optical axis. The phase gradient measured is 217λ. A zoomed region, marked in blue, is shown in the right part of the figure. Given the small size of both figures, some Moiré artifacts appear in the images on the left that are not part of the fringe pattern of a spherical phase gradient (see Supplement 1).
Fig. 6.
Fig. 6. Evolution of reconstruction quality when CS is used for wavefront recovery. For different values of the compression ratio (k/N2, k being the number of projected patterns), we present the correlation coefficient between the CS estimation and the recovery without using undersampling. Here, the images have a resolution of 64×64  pixels, so N2=4096. The points represent the median of the correlation coefficient for 100 different realizations of the algorithm (each realization corresponds to a different subset of random measurements).
Fig. 7.
Fig. 7. Comparison with phase-shifting interferometry. (a) Photograph of the photoresist layer used for the experiment. The black square represents the region that will be imaged, consisting of zones with and without photoresist material. (b) Amplitude and phase images obtained with the proposed technique. Due to the absorption properties of the object, the amplitude image presents poor quality. However, in the phase image, fine details of the sample can be observed. (c) 3D representation of the obtained phase. (d) Phase image obtained with phase-shifting interferometry for the same region of the object. In the inset, we show the region between the two small holes present in one of the photoresist bars. (e) Physical profile of the photoresist strip between the two holes obtained with an optical profilometer (Sensofar Plμ 2300).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ=(Δx,Δy)=λf2πϕ,
S=I2(x,y)dxdy,
Δ=(ΔxΔy)=1S(x·I2(x,y)dxdyy·I2(x,y)dxdy).
Δ=(Δx;Δy)=λf2πSA2(x,y)ϕ(x,y)dxdy.
A(x,y)=K·rect(xaL)·rect(ybL),
Δx=λfK22πSy=bL/2y=b+L/2x=aL/2x=a+L/2x[ϕ(x,y)]dxdy;Δy=λfK22πSy=bL/2y=b+L/2x=aL/2x=a+L/2y[ϕ(x,y)]dxdy.
Δ=(Δx;Δy)=K2λf2πL2Sa,bϕ(x,y),
Δ=(Δx;Δy)=λf2πa,bϕ(x,y).
y=Mx,
Δ=λf2πMϕ.
α=argminα1such thatϕα=y.

Metrics