Abstract

Probing conductivity in a contactless way with nanoscale resolution is a pressing demand in such active fields as quantum materials, superconductivity, and molecular electronics. Here, we demonstrate a laser- and cryogen-free microwave-technology-based scattering-type scanning near-field optical microscope powered by an easily aligned free-space beam with a tunable frequency up to 0.75 THz. It uses Schottky diode components to record background-free amplitude and phase nano-images, for the first time in the terahertz range, which is uniquely sensitive for assessing conduction phenomena. Images of Si with doped nanostructures prove a conductance sensitivity corresponding to 1016  cm3 mobile carriers, at 50 nm spatial resolution.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-resolved terahertz self-detection near-field microscopy

Maria C. Giordano, Stefan Mastel, Clemens Liewald, Lorenzo L. Columbo, Massimo Brambilla, Leonardo Viti, Antonio Politano, Kai Zhang, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Rainer Hillenbrand, Fritz Keilmann, Gaetano Scamarcio, and Miriam S. Vitiello
Opt. Express 26(14) 18423-18435 (2018)

Planar antennas for all-electronic terahertz systems

D. W. van der Weide
J. Opt. Soc. Am. B 11(12) 2553-2560 (1994)

Terahertz-driven, all-optical electron gun

W. Ronny Huang, Arya Fallahi, Xiaojun Wu, Huseyin Cankaya, Anne-Laure Calendron, Koustuban Ravi, Dongfang Zhang, Emilio A. Nanni, Kyung-Han Hong, and Franz X. Kärtner
Optica 3(11) 1209-1212 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).
  2. S. V. Dordevic and D. N. Basov, “Electrodynamics of correlated electron matter,” Ann. Phys. 15, 545–570 (2006).
    [Crossref]
  3. M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
    [Crossref]
  4. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
    [Crossref]
  5. F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
    [Crossref]
  6. A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
    [Crossref]
  7. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [Crossref]
  8. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
    [Crossref]
  9. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts inscattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
    [Crossref]
  10. G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
    [Crossref]
  11. D. M. Riffe, “Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements,” J. Opt. Soc. Am. B 19, 1092–1100 (2002).
    [Crossref]
  12. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
    [Crossref]
  13. J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
    [Crossref]
  14. M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
    [Crossref]
  15. K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
    [Crossref]
  16. F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
    [Crossref]
  17. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
    [Crossref]
  18. F. Huth and Y. Abate, (personal communication, 2017).
  19. M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”
  20. A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
    [Crossref]

2016 (1)

M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
[Crossref]

2014 (2)

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

2012 (1)

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

2010 (1)

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

2009 (1)

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

2008 (2)

H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

2007 (2)

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts inscattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[Crossref]

2006 (2)

S. V. Dordevic and D. N. Basov, “Electrodynamics of correlated electron matter,” Ann. Phys. 15, 545–570 (2006).
[Crossref]

F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

2002 (1)

2000 (2)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

1996 (1)

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

1983 (1)

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
[Crossref]

Abate, Y.

F. Huth and Y. Abate, (personal communication, 2017).

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

Algra, R. E.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

Anlage, S. M.

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

Bakkers, E.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

Barry, J. D.

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

Basov, D.

M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
[Crossref]

Basov, D. N.

S. V. Dordevic and D. N. Basov, “Electrodynamics of correlated electron matter,” Ann. Phys. 15, 545–570 (2006).
[Crossref]

Brambilla, M.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Brehm, M.

Buersgens, F.

F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

Carney, P. S.

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

Chen, H.-T.

F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

Cocker, T. L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Columbo, L. L.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Cvitkovic, A.

Davies, A. G.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Diedenhofen, S. L.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

Do, Y.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Dordevic, S. V.

S. V. Dordevic and D. N. Basov, “Electrodynamics of correlated electron matter,” Ann. Phys. 15, 545–570 (2006).
[Crossref]

Drachenko, O.

Eickelkamp, T.

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Eisele, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Ercolani, D.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Giordano, M. C.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Gomez Rivas, J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

Han, H.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Helm, M.

Hillenbrand, R.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts inscattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Hinterdorfer, P.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Hornung, A.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Huber, A. J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

Huber, H.-P.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Huber, M. A.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Huber, R.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Huth, F.

F. Huth and Y. Abate, (personal communication, 2017).

Imtiaz, A.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

Kabos, P.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Kang, H.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Keilmann, F.

H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Kersting, R.

F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

Kienberger, F.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Kim, J.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Knoll, B.

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

Lee, G.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Lee, S.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Li, L.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Liewald, C.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Lim, S.-H.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Linfield, E. H.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Liu, M.

M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
[Crossref]

Masetti, G.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
[Crossref]

Mastel, S.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Melngailis, J.

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

Merz, R.

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Moon, K.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Ocelic, N.

Park, H.

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Plankl, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Politano, A.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Riffe, D. M.

Scamarcio, G.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Schotland, J. C.

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

Severi, M.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
[Crossref]

Smoliner, J.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Solmi, S.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
[Crossref]

Sorba, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Sternbach, A. J.

M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
[Crossref]

Stiegler, J. M.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

Stöckle, D.

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Sun, J.

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

Tanbakuchi, H.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

van der Weide, D. W.

Viti, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Vitiello, M. S.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

von Ribbeck, H.-G.

Wallis, T. M.

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

Weide, D. W. V. D.

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Winnerl, S.

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

Zhang, K.

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

Ann. Phys. (1)

S. V. Dordevic and D. N. Basov, “Electrodynamics of correlated electron matter,” Ann. Phys. 15, 545–570 (2006).
[Crossref]

Appl. Phys. Lett. (4)

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90, 143106 (2007).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[Crossref]

F. Buersgens, H.-T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

IEEE Trans. Electron. Devices (1)

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans. Electron. Devices 30, 764–769 (1983).
[Crossref]

J. Appl. Phys. (1)

A. Imtiaz, T. M. Wallis, S.-H. Lim, H. Tanbakuchi, H.-P. Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, and P. Kabos, “Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope,” J. Appl. Phys. 111, 93727 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gomez Rivas, R. E. Algra, E. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[Crossref]

K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15, 549–552 (2014).
[Crossref]

Nat. Photonics (1)

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Opt. Commun. (1)

F. Keilmann, D. W. V. D. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

Rep. Prog. Phys. (1)

M. Liu, A. J. Sternbach, and D. Basov, “Nanoscale electrodynamics of strongly correlated quantum materials,” Rep. Prog. Phys. 80, 014501 (2016).
[Crossref]

Other (3)

F. Huth and Y. Abate, (personal communication, 2017).

M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello are preparing a manuscript to be called “Phase-resolved terahertz self-detection near-field microscopy.”

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

Supplementary Material (1)

NameDescription
» Supplement 1       Principle of Mixer and Tapping Demodulation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Sketch of s-SNOM illuminated by a free-space THz beam, tunable between 0.5 and 0.75 THz, from a microwave–harmonic transceiver circuit that also provides heterodyne detection of back-propagating THz waves and generates output signals I and Q. These signals become demodulated in the s-SNOM controller at low-order harmonics n of the tip tapping frequency Ω, to generate simultaneous, background-free near-field amplitude and phase images together with topography.
Fig. 2.
Fig. 2. Single-frequency 0.6 THz s-SNOM of Si exhibiting topographical as well as doping nanostructures, namely, the simultaneously recorded topography (top), THz amplitude s3 (mid), and THz phase ϕ3 nano-images (bottom); acquisition time, 10 min.
Fig. 3.
Fig. 3. Single-frequency 0.6 THz s-SNOM image (1  μm×2  μm) of Si as in Fig. 2 extending over the edge of the ion-implanted region C. (a) Simultaneously recorded topography (top), THz amplitude s3 (mid), and THz phase ϕ3 (bottom); acquisition time, 2.5 min; (b) Line profiles (dots) along the full 2 μm width of the image (a), height (grey), amplitude (black), and phase (red) obtained by averaging the lower 400 nm each of the respective images; curves are obtained by smoothing.
Fig. 4.
Fig. 4. Predicted 0.6 THz s-SNOM scattering amplitude s3 (black) and scattering phase ϕ3 (red) of Si, relative to Au, versus carrier density for electrons (thin curves) and holes (thick curves). Letters tentatively placed next to these curves correspond to the sections a–e of the n-p transition region investigated in Fig. 3.

Metrics