Abstract

Femtosecond filamentation is a self-organization phenomenon during which an ultrashort high-power laser stays confined in a very small channel over very long distances. Ultimately, however, the finite energy contained in a filament is dissipated because of losses originated from ionization, limiting thereby the filament length. In other words, ionization represents a fundamental limitation in remote applications where long-ranged filaments are required. In this paper, a low-loss Kerr-driven optical filament in krypton gas is experimentally reported in the ultraviolet. A three-photon resonantly enhanced quintic nonlinearity is identified as the underlying physical mechanism responsible for intensity saturation during the filamentation process, while ionization plays only a minor role. The resonant nature of the process creates also conducive conditions, i.e., a significant population inversion, for forward and backward infrared lasing. Preliminary experimental results suggest that such lasing emission takes place. The reported resonantly enhanced filaments are one order of magnitude longer than their off-resonant counterparts. The resonance is also accompanied by a large decrease of both ionization and nonlinear optical losses. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Beyond its theoretical interest, resonantly enhanced filamentation could benefit all applications deriving from the filamentation process. For instance, the extension of this work to molecular gases such as oxygen and nitrogen could lead to numerous atmospheric applications such as nonlinear spectroscopy, remote sensing, and lightning protection, in which the transport of high energies over long distances is of prime importance.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonantly-enhanced harmonic generation in Argon

P. Ackermann, H. Münch, and T. Halfmann
Opt. Express 20(13) 13824-13832 (2012)

Physics and applications of atmospheric nonlinear optics and filamentation

Jérôme Kasparian and Jean-Pierre Wolf
Opt. Express 16(1) 466-493 (2008)

Resonantly enhanced real hyperpolarizability

G. Meshulam, G. Berkovic, and Z. Kotler
Opt. Lett. 26(1) 30-32 (2001)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
    [Crossref]
  2. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
    [Crossref]
  3. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  4. G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
    [Crossref]
  5. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
    [Crossref]
  6. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008).
    [Crossref]
  7. S. Skupin and L. Bergé, “Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths,” Opt. Commun. 280, 173–182 (2007).
    [Crossref]
  8. L. Bergé, “Self-compression of 2  μm laser filaments,” Opt. Express 16, 21529–21543 (2008).
    [Crossref]
  9. L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
    [Crossref]
  10. P. Béjot, C. Bonnet, V. Boutou, and J.-P. Wolf, “Laser noise compression by filamentation at 400 nm in argon,” Opt. Express 15, 13295–13303 (2007).
    [Crossref]
  11. M. Ghotbi, P. Trabs, and M. Beutler, “Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon,” Opt. Lett. 36, 463–465 (2011).
    [Crossref]
  12. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
    [Crossref]
  13. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “Mid-infrared laser filamentation in molecular gases,” Opt. Lett. 38, 3194–3197 (2013).
    [Crossref]
  14. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
    [Crossref]
  15. J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
    [Crossref]
  16. A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, and A. Mysyrowicz, “Study of filamentation with a high power high repetition rate ps laser at 1.03  μm,” Opt. Express 24, 7437–7448 (2016).
    [Crossref]
  17. R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
    [Crossref]
  18. F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
    [Crossref]
  19. H. G. Muller, “Numerical simulation of high-order above-threshold-ionization enhancement in argon,” Phys. Rev. A 60, 1341–1350 (1999).
    [Crossref]
  20. P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
    [Crossref]
  21. C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
    [Crossref]
  22. C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
    [Crossref]
  23. P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
    [Crossref]
  24. A. Dogariu and R. B. Miles, “Three-photon femtosecond pumped backwards lasing in argon,” Opt. Express 24, A544–A552 (2016).
    [Crossref]
  25. P. Laporte and H. Damany, “High density self-broadening of the first xenon and krypton resonance line,” J. Phys. 40, 9–22 (1979).
    [Crossref]

2016 (2)

2015 (3)

F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

2013 (4)

L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
[Crossref]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “Mid-infrared laser filamentation in molecular gases,” Opt. Lett. 38, 3194–3197 (2013).
[Crossref]

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

2012 (1)

2011 (2)

M. Ghotbi, P. Trabs, and M. Beutler, “Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon,” Opt. Lett. 36, 463–465 (2011).
[Crossref]

C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
[Crossref]

2008 (2)

2007 (4)

S. Skupin and L. Bergé, “Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths,” Opt. Commun. 280, 173–182 (2007).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

P. Béjot, C. Bonnet, V. Boutou, and J.-P. Wolf, “Laser noise compression by filamentation at 400 nm in argon,” Opt. Express 15, 13295–13303 (2007).
[Crossref]

2005 (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

2004 (1)

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

2003 (1)

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

2001 (1)

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[Crossref]

2000 (1)

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

1999 (1)

H. G. Muller, “Numerical simulation of high-order above-threshold-ionization enhancement in argon,” Phys. Rev. A 60, 1341–1350 (1999).
[Crossref]

1979 (1)

P. Laporte and H. Damany, “High density self-broadening of the first xenon and krypton resonance line,” J. Phys. 40, 9–22 (1979).
[Crossref]

Aközbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Ališauskas, S.

André, Y.-B.

Andriukaitis, G.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Baltuška, A.

Bandrauk, A. D.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

Becker, A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Béjot, P.

Bergé, L.

L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
[Crossref]

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
[Crossref]

L. Bergé, “Self-compression of 2  μm laser filaments,” Opt. Express 16, 21529–21543 (2008).
[Crossref]

S. Skupin and L. Bergé, “Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths,” Opt. Commun. 280, 173–182 (2007).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Beutler, M.

Bonnet, C.

Boutou, V.

Chelkowski, S.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

Chin, S. L.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Cloux, F.

F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
[Crossref]

Cormier, E.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Damany, H.

P. Laporte and H. Damany, “High density self-broadening of the first xenon and krypton resonance line,” J. Phys. 40, 9–22 (1979).
[Crossref]

Diels, J.-C.

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Dogariu, A.

Fabre, B.

F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
[Crossref]

Faucher, O.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

Fedotov, A. B.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Fibich, G.

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[Crossref]

Flöry, T.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Ghotbi, M.

Guichard, R.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

Helm, H.

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

Hertz, E.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Houard, A.

Ilan, B.

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[Crossref]

Jukna, V.

Kaminski, P.

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

Kandidov, V. P.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Kartashov, D.

Kasparian, J.

Kazmierczak, A.

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

Klingebiel, S.

Köhler, C.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
[Crossref]

C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
[Crossref]

Kolesik, M.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Kosareva, O. G.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Laporte, P.

P. Laporte and H. Damany, “High density self-broadening of the first xenon and krypton resonance line,” J. Phys. 40, 9–22 (1979).
[Crossref]

Lavorel, B.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

Liu, W.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Lorin, E.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Metzger, T.

Michel, K.

Miles, R. B.

Mitrofanov, A. V.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Moloney, J. V.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Muller, H. G.

H. G. Muller, “Numerical simulation of high-order above-threshold-ionization enhancement in argon,” Phys. Rev. A 60, 1341–1350 (1999).
[Crossref]

Mysyrowicz, A.

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

Petrarca, M.

Point, G.

Pons, B.

F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
[Crossref]

Pugžlys, A.

Rambo, P.

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Renard, V.

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

Rolle, J.

L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
[Crossref]

Schroeder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Schultze, M.

Schwarz, J.

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Sidorov-Biryukov, D. A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Skupin, S.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

S. Skupin and L. Bergé, “Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths,” Opt. Commun. 280, 173–182 (2007).
[Crossref]

Stepanov, E. A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Theberge, F.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Trabs, P.

Voronin, A.

Voronin, A. A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Whalen, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

Wiehle, R.

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

Witzel, B.

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

Wolf, J.-P.

Wright, E. M.

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Zheltikov, A.

Zheltikov, A. M.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

J. Phys. (1)

P. Laporte and H. Damany, “High density self-broadening of the first xenon and krypton resonance line,” J. Phys. 40, 9–22 (1979).
[Crossref]

Nat. Photonics (1)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9, 543–548 (2015).
[Crossref]

Opt. Commun. (2)

S. Skupin and L. Bergé, “Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths,” Opt. Commun. 280, 173–182 (2007).
[Crossref]

J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383–390 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. A (6)

L. Bergé, J. Rolle, and C. Köhler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013).
[Crossref]

R. Wiehle, B. Witzel, H. Helm, and E. Cormier, “Dynamics of strong-field above-threshold ionization of argon: comparison between experiment and theory,” Phys. Rev. A 67, 063405 (2003).
[Crossref]

F. Cloux, B. Fabre, and B. Pons, “Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton,” Phys. Rev. A 91, 023415 (2015).
[Crossref]

H. G. Muller, “Numerical simulation of high-order above-threshold-ionization enhancement in argon,” Phys. Rev. A 60, 1341–1350 (1999).
[Crossref]

P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak, B. Lavorel, O. Faucher, and B. Witzel, “Wavelength dependence of multiphoton ionization of xenon,” Phys. Rev. A 70, 053413 (2004).
[Crossref]

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).
[Crossref]

Phys. Rev. Lett. (1)

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett. 110, 043902 (2013).
[Crossref]

Physica D (2)

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[Crossref]

C. Köhler, L. Bergé, and S. Skupin, “Effect of nonlinear dispersion on pulse self-compression in a defocusing noble gas,” Physica D 240, 963–970 (2011).
[Crossref]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Sci. Rep. (1)

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Longitudinal profile of (a) the filament and (b) the associated maximal fluorescence signal as a function of the central wavelength. The blue cubes in (b) correspond to experimental results, while the red spheres to ab initio output calculations obtained in the case of a 50 fs laser pulse. (c) The panel displays the longitudinal profile for two distinct wavelengths, namely, 301 nm and 310 nm.
Fig. 2.
Fig. 2. Filament length (blue squares) and losses per filament length unit (red solid line) measured as a function of the central wavelength of the filament. The displayed length is measured at FWHM of the plasma luminescence.
Fig. 3.
Fig. 3. (a) Nonlinear refractive index of krypton gas calculated as a function of both intensity and central wavelength of the 7 fs laser field. The white line corresponds to the peak intensity Iinv at which the nonlinear refractive index changes its sign. (b) Ionization yield as a function of the laser wavelength at the intensity at which the nonlinear refractive index changes its sign according to ab initio calculations (blue diamonds), and according to the usual scenario of filamentation (red solid line). The inset corresponds to the wavelength region studied experimentally.
Fig. 4.
Fig. 4. Contributions of the Kerr effect (dotted red), ionization (dashed violet), and higher-order Kerr effect (dotted-dashed green) to the total refractive index change (solid blue) of krypton at λ=300  nm as a function of the intensity. The inset shows the total refractive index change (solid blue), the sum of the contributions of the Kerr effect and ionization (dashed violet), and the sum of the contributions of the Kerr effect and higher-order Kerr effect (dashed green).
Fig. 5.
Fig. 5. Populations left in the excited states as a function of the laser central wavelength at (a) 2  TW/cm2 and (b) 14  TW/cm2. The blue (red) lines pinpoint the multiphoton resonances involving an odd (even) number n of photons. The 4p ground state is not shown for clarity. Note also that the displacement of these lines stemming from the dynamic Stark shift is taken into account in (b). The laser pulse duration is 7 fs.
Fig. 6.
Fig. 6. Forward lasing spectrum as a function of the pump wavelength. The emission lines (a) and (b) have been measured with an optical spectrum analyzer, while those in (c) have been observed with a low-resolution spectrometer. All the observed radiations come from bound excited states resonantly pumped by three-photon absorption around 300 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

id|ψdt=(H0+Hint)|ψ,
Veff(r)=1+AeBr+(35A)eCrr,
W(r<Rx)=G(1r1Rx)2,W(r>Rx)=0,
n(ω0)=1+Pz(ω0)ε0E(ω0),
Pz(t)=Nψ(t)|z|ψ(t),
Δn=n(ω0,I0)n(ω0,I=0),

Metrics