Abstract

Sunlight readability is a critical requirement for display devices, especially for mobile displays. Anti-reflection (AR) films can greatly improve sunlight readability by reducing the surface reflection. In this work, we demonstrate a broadband moth-eye-like AR surface on a flexible substrate, intended for flexible display applications. The moth-eye-like nanostructure was fabricated by an imprinting process onto a flexible substrate with a thin hard-coating film. The proposed nanostructure exhibits excellent AR with luminous reflectance <0.23% and haze below 1% with indistinguishable image quality deterioration. A rigorous numerical model is developed to simulate and optimize the optical behaviors. Excellent agreement between the experiment and simulation is obtained. Meanwhile, the nanostructure shows robust mechanical characteristics (pencil hardness >3  H), which is favorable for touch panels. A small bending radius (8 mm) was also demonstrated, which makes the proposed nanostructure applicable for flexible displays. Additionally, a fluoroalkyl coating was applied onto the moth-eye-like surface to improve the hydrophobicity (with a water contact angle >100°). Such a self-cleaning feature helps protect touch panels from dust and fingerprints. The proposed moth-eye-like AR film is expected to find widespread applications for sunlight readable flexible and curved displays.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical interference coatings for optics and photonics [Invited]

Cheng-Chung Lee
Appl. Opt. 52(1) 73-81 (2013)

Optical panel with full multitouch using patterned indium tin oxide

Wen-Yang Chang, Heng-Ju Lin, and Jin-Sheng Chang
Opt. Lett. 36(6) 894-896 (2011)

Plastic optical touch panels for large-scale flexible display

Beom-Jun Cheon, Jun-Whee Kim, and Min-Cheol Oh
Opt. Express 21(4) 4734-4739 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Chung and S. Lu, “Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications,” J. Soc. Info. Disp. 11, 237–242 (2003).
    [Crossref]
  2. X. Zhu, Z. Ge, T. X. Wu, and S. T. Wu, “Transflective liquid crystal displays,” J. Display Technol. 1, 15–29 (2005).
    [Crossref]
  3. G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).
  4. J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13, 9431–9438 (2005).
    [Crossref]
  5. G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
    [Crossref]
  6. J. A. Dobrowolski, B. T. Sullivan, and R. C. Bajcar, “Optical interference, contrast-enhanced electroluminescent device,” Appl. Opt. 31, 5988–5996 (1992).
    [Crossref]
  7. R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
    [Crossref]
  8. E. J. Schanda, Colorimetry: Understanding the CIE System (Wiley, 2007).
  9. A. M. Nuijs and J. J. L. Horikx, “Diffraction and scattering at antiglare structures for display devices,” Appl. Opt. 33, 4058–4068 (1994).
    [Crossref]
  10. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
    [Crossref]
  11. D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
    [Crossref]
  12. A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
    [Crossref]
  13. T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
    [Crossref]
  14. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
    [Crossref]
  15. B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
    [Crossref]
  16. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011).
    [Crossref]
  17. T. G. Chen, P. Yu, Y. L. Tsai, C. H. Shen, J. M. Shieh, M. A. Tsai, and H. C. Kuo, “Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si: H thin film solar cells,” Opt. Express 20, A412–A417 (2012).
    [Crossref]
  18. J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
    [Crossref]
  19. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16, 10549–10556 (2008).
    [Crossref]
  20. H. Hattori, “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater. 13, 51–54 (2001).
    [Crossref]
  21. Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 30, 1885–1887 (2005).
    [Crossref]
  22. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
    [Crossref]
  23. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
    [Crossref]
  24. S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
    [Crossref]
  25. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002).
    [Crossref]
  26. R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
    [Crossref]
  27. S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
    [Crossref]
  28. Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
    [Crossref]
  29. O. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23, 1–65 (1960).
    [Crossref]
  30. V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
    [Crossref]
  31. L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
    [Crossref]
  32. A. Siriviriyanun and T. Imae, “Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces,” Chem. Eng. J. 246, 254–259 (2014).
    [Crossref]

2016 (2)

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

2015 (2)

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

2014 (1)

A. Siriviriyanun and T. Imae, “Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces,” Chem. Eng. J. 246, 254–259 (2014).
[Crossref]

2013 (1)

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

2012 (4)

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[Crossref]

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

T. G. Chen, P. Yu, Y. L. Tsai, C. H. Shen, J. M. Shieh, M. A. Tsai, and H. C. Kuo, “Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si: H thin film solar cells,” Opt. Express 20, A412–A417 (2012).
[Crossref]

2011 (3)

N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011).
[Crossref]

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

2010 (1)

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

2009 (2)

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[Crossref]

2008 (1)

2007 (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

2006 (1)

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

2005 (3)

2004 (1)

D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
[Crossref]

2003 (1)

H. H. Chung and S. Lu, “Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications,” J. Soc. Info. Disp. 11, 237–242 (2003).
[Crossref]

2002 (1)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002).
[Crossref]

2001 (1)

H. Hattori, “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater. 13, 51–54 (2001).
[Crossref]

2000 (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

1994 (1)

1992 (1)

1960 (1)

O. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23, 1–65 (1960).
[Crossref]

Alaeian, H.

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

Asahi, M.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Bajcar, R. C.

Boreman, G. D.

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

Bovik, A. C.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002).
[Crossref]

Brinkley, I.

D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
[Crossref]

Carlson, G. R.

G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Chen, C. P.

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Chen, L. Y.

Chen, T. G.

Chen, W. T.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Chen, Z.

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

Cheng, Y. W.

Chernow, V. F.

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

Choi, W.

Chunder, A.

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

Chung, H. H.

H. H. Chung and S. Lu, “Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications,” J. Soc. Info. Disp. 11, 237–242 (2003).
[Crossref]

Cohen, R. E.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Dewan, R.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Dionne, J. A.

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

Dobrowolski, J. A.

Etcheverry, K.

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

Fischer, S.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Fujii, A.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Fujishima, A.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Ge, Z.

Gibson, D. R.

D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
[Crossref]

Gordon, J. N.

G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).

Greer, J. R.

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

Hamraz, S.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Hattori, H.

H. Hattori, “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater. 13, 51–54 (2001).
[Crossref]

Hayashi, H.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Hayashi, K.

Heavens, O. S.

O. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23, 1–65 (1960).
[Crossref]

Hong, A. J.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Horikx, J. J. L.

Hsieh, M. Y.

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Hsu, S. C.

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Huang, J.

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Huang, Y. W.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Hwangbo, C. K.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Ibuki, S.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Ihara, I.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Ijiro, T.

Imae, T.

A. Siriviriyanun and T. Imae, “Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces,” Chem. Eng. J. 246, 254–259 (2014).
[Crossref]

Isurugi, A.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Ito, Y.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Itoh, Y.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Ji, S.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

Ke, M. Y.

Kim, J.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Kim, N.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

Kim, N. Y.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Knipp, D.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Kuittinen, M.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[Crossref]

Kuo, H. C.

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Lee, J. H.

Lee, K. C.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Lee, Y. Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Lim, H.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

Lin, H. Y.

Lin, T. C.

Lin, Y. H.

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Lu, S.

H. H. Chung and S. Lu, “Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications,” J. Soc. Info. Disp. 11, 237–242 (2003).
[Crossref]

Luo, Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Mao, G.

Masuda, H.

Matsumoto, A.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Meyer-Rochow, V. B.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Minoura, K.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Murakami, T.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Nah, J. W.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Nakata, K.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Narayanan Unni, K. N.

R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[Crossref]

Ngian, S. K.

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

Nguyen, T. B.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

Nolte, A.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Nuijs, A. M.

Ochiai, T.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Oh, J. H.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Okamoto, E.

Özdemir, Y.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Päivänranta, B.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[Crossref]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Park, M. C.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Pawlak, R.

G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Peng, L. H.

Ross, F. M.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Rubner, M. F.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Saastamoinen, T.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[Crossref]

Sadana, D. K.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Sakai, M.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Schanda, E. J.

E. J. Schanda, Colorimetry: Understanding the CIE System (Wiley, 2007).

Shen, C. H.

Shibata, N.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Shieh, J. M.

Shin, B.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Singh, R.

R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[Crossref]

Siriviriyanun, A.

A. Siriviriyanun and T. Imae, “Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces,” Chem. Eng. J. 246, 254–259 (2014).
[Crossref]

Solanki, A.

R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[Crossref]

Son, Y. B.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Song, K.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

Suga, Y.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Sullivan, B. T.

Sun, G.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Taguchi, T.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Takagi, K.

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Tan, G.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Trapani, G.

G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).

Tsai, D. P.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Tsai, M. A.

Tsai, W. Y.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Tsai, Y. L.

Tsai, Y. S.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Tsuda, K.

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Wadsworth, S.

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

Wakizaka, D.

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

Walish, J.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Walls, J. M.

D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
[Crossref]

Wang, C. M.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Wang, C. Y.

Wang, J.

Wang, Z.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002).
[Crossref]

Wu, H. M.

Wu, L. Y.

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

Wu, P. C.

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Wu, S. T.

Wu, T. X.

Wu, Z.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Xuan, D. T. T.

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

Yamada, N.

N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011).
[Crossref]

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Yu, P.

Zhai, L.

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Zhao, Y.

Zhu, R.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

Zhu, X.

ACS Appl. Mater. Interfaces (1)

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref]

ACS Nano (1)

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Adv. Mater. (2)

H. Hattori, “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater. 13, 51–54 (2001).
[Crossref]

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18, 2699–2702 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. F. Chernow, H. Alaeian, J. A. Dionne, and J. R. Greer, “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared,” Appl. Phys. Lett. 107, 101905 (2015).
[Crossref]

Appl. Surf. Sci. (1)

L. Y. Wu, S. K. Ngian, Z. Chen, and D. T. T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces,” Appl. Surf. Sci. 257, 2965–2969 (2011).
[Crossref]

Bioinspir. Biomim. (1)

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim. 7, 016003 (2012).
[Crossref]

Chem. Eng. J. (1)

A. Siriviriyanun and T. Imae, “Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces,” Chem. Eng. J. 246, 254–259 (2014).
[Crossref]

IEEE Signal Process. Lett. (1)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002).
[Crossref]

J. Display Technol. (1)

J. Phys. D (1)

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49, 315101 (2016).
[Crossref]

J. Soc. Info. Disp. (2)

A. Chunder, K. Etcheverry, S. Wadsworth, G. D. Boreman, and L. Zhai, “Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique,” J. Soc. Info. Disp. 17, 389–395 (2009).
[Crossref]

H. H. Chung and S. Lu, “Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications,” J. Soc. Info. Disp. 11, 237–242 (2003).
[Crossref]

Langmuir (1)

K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, “Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles,” Langmuir 27, 3275–3278 (2011).
[Crossref]

Nano Lett. (1)

Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15, 3122–3127 (2015).
[Crossref]

Nanotechnology (1)

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[Crossref]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

R. Singh, K. N. Narayanan Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[Crossref]

Proc. SPIE (1)

D. R. Gibson, I. Brinkley, and J. M. Walls, “Optical coatings and thin films for display technologies using closed-field magnetron sputtering,” Proc. SPIE 5618, 156–165 (2004).
[Crossref]

Rep. Prog. Phys. (1)

O. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23, 1–65 (1960).
[Crossref]

SID Symp. Dig. Tech. Pap. (2)

S. Ibuki, A. Matsumoto, M. Asahi, D. Wakizaka, N. Shibata, Y. Suga, and Y. Ito, “A novel moth-eye-like surface film that is anti-reflective and highly scratch resistant,” SID Symp. Dig. Tech. Pap. 47, 761–764 (2016).
[Crossref]

T. Taguchi, H. Hayashi, A. Fujii, K. Tsuda, N. Yamada, K. Minoura, A. Isurugi, I. Ihara, and Y. Itoh, “Ultra-low-reflective 60-in. LCD with uniform moth-eye surface for digital signage,” SID Symp. Dig. Tech. Pap. 41, 1196–1199 (2010).
[Crossref]

Surf. Coat. Technol. (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Technol. 128, 156–160 (2000).
[Crossref]

Other (2)

E. J. Schanda, Colorimetry: Understanding the CIE System (Wiley, 2007).

G. Trapani, R. Pawlak, G. R. Carlson, and J. N. Gordon, “High durability circular polarizer for use with emissive displays,” U.S. patent6,549,335 (15April2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Fabrication process flow of the moth-eye-like nanostructure on the hard-coating film above flexible PET or TAC substrate.

Fig. 2.
Fig. 2.

SEM images of (a)  SiO 2 nanoparticle monolayer on the template, (b) imprinted nanostructure on TAC substrate before HF dipping, (c) top view and (d) side view of final moth-eye-like nanostructure on TAC substrate.

Fig. 3.
Fig. 3.

Optical characterization results of the template and moth-eye-like nanostructures. Template: (a) transmittance, (b) reflection, and (c) haze spectra of glass substrate with and without SiO 2 nanosphere coating. Moth-eye-like structure on PET: (d) transmittance, (e) reflection, and (f) haze spectra of PET substrate, planar hard-coating film on PET substrate, and hard-coating film with moth-eye-like structure on PET substrate. Moth-eye-like structure on TAC: (g) transmittance, (h) reflection, and (i) haze spectra of TAC substrate, planar hard-coating film on TAC substrate, and hard-coating film with moth-eye-like structure on TAC substrate. (NP, nanoparticle; HC, hard coating; and ME, moth eye).

Fig. 4.
Fig. 4.

Photographs of three films under the same white-light illumination. (a) TAC substrate, (b) planar hard-coating film on TAC substrate, and (c) hard-coating film with moth-eye-like structure on TAC substrate.

Fig. 5.
Fig. 5.

Photos of Lena picture: (a) without, (b) with moth-eye-like nanostructured PET film, and (c) with moth-eye-like nanostructured TAC film attachment on the display.

Fig. 6.
Fig. 6.

Schematic illustration of the optical simulation of the moth-eye-like nanostructured films.

Fig. 7.
Fig. 7.

Measured and simulated reflectance of nanostructured films: (a) nanoparticle template, (b) moth-eye-like nanostructured hard coating on PET film and (c) moth-eye-like nanostructured hard coating on TAC film.

Fig. 8.
Fig. 8.

Simulated reflectance spectra with different nanostructure parameters: (a) imprinting depth and (b) nanoparticle diameter.

Fig. 9.
Fig. 9.

Nanostructured films bending test configuration: (a) 12-mm-diameter cylinder and (b) 8-mm-diameter cylinder.

Fig. 10.
Fig. 10.

Water contact angle measurement: (a) planar hard coating with contact angle 91.3° and (b) moth-eye-like structure on hard-coating film with contact angle 103.4°.

Tables (2)

Tables Icon

Table 1. Measured Transmittance ( T ), Reflection ( R ) and Haze ( H ) of the Films a

Tables Icon

Table 2. Mechanical Properties of Moth-Eye-Like Nanostructured Films

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ACR = L on + R L · L ambient L off + R L · L ambient ,
R L = λ 1 λ 2 V ( λ ) R ( λ ) S ( λ ) d λ λ 1 λ 2 V ( λ ) S ( λ ) d λ ,
Q = σ x y σ x σ y × 2 x ¯ y ¯ x ¯ 2 + y ¯ 2 × 2 σ x σ y σ x 2 + σ y 2 .

Metrics