Abstract

Chip-scale high-precision measurements of physical quantities such as temperature, pressure, refractive index, and analytes have become common with nanophotonics and nanoplasmonics resonance cavities. Despite several important accomplishments, such optical sensors are still limited in their performances in the short and, in particular, long time regimes. Two major limitations are environmental fluctuations, which are imprinted on the measured signal, and the lack of miniaturized, scalable robust and precise methods of measuring optical frequencies directly. Here, by utilizing a frequency-locked loop combined with a reference resonator, we overcome these limitations and convert the measured signal from the optical domain to the radio-frequency domain. By doing so, we realize a highly precise on-chip sensing device with sensing precision approaching 108 in effective refractive index units, and 90 μK in temperature. Such an approach paves the way for single particle detection and high-precision chip-scale thermometry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures

Haitan Xu, Mohammad Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Zeeshan Ahmed
Opt. Express 22(3) 3098-3104 (2014)

On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array

Kristinn B. Gylfason, Carl Fredrik Carlborg, Andrzej Kaźmierczak, Fabian Dortu, Hans Sohlström, Laurent Vivien, Carlos A. Barrios, Wouter van der Wijngaart, and Göran Stemme
Opt. Express 18(4) 3226-3237 (2010)

Refractive index sensing with temperature compensation by a multimode-interference fiber-based optical frequency comb sensing cavity

Ryo Oe, Takeo Minamikawa, Shuji Taue, Hidenori Koresawa, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, and Takeshi Yasui
Opt. Express 27(15) 21463-21476 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  2. A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
    [Crossref]
  3. V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
    [Crossref]
  4. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
    [Crossref]
  5. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
    [Crossref]
  6. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
    [Crossref]
  7. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
    [Crossref]
  8. P. F. Egan, J. A. Stone, J. H. Hendricks, J. E. Ricker, G. E. Scace, and G. F. Strouse, “Performance of a dual Fabry–Perot cavity refractometer,” Opt. Lett. 40, 3945–3948 (2015).
    [Crossref]
  9. S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
    [Crossref]
  10. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012).
    [Crossref]
  11. A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
    [Crossref]
  12. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref]
  13. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
    [Crossref]
  14. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
    [Crossref]
  15. D. Kim, P. Popescu, M. Harfouche, J. Sendowski, M.-E. Dimotsantou, R. C. Flagan, and A. Yariv, “On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme,” Opt. Lett. 40, 4106–4109 (2015).
    [Crossref]
  16. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [Crossref]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  18. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [Crossref]
  19. T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. J. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558–3566 (2005).
    [Crossref]
  20. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
    [Crossref]
  21. L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
    [Crossref]
  22. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  23. A. Naiman, B. Desiatov, L. Stern, N. Mazurski, J. Shappir, and U. Levy, “Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform,” Opt. Lett. 40, 1892–1895 (2015).
    [Crossref]
  24. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18, 18592–18597 (2010).
    [Crossref]
  25. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [Crossref]
  26. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [Crossref]
  27. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
  28. M. S. Taubman and J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
    [Crossref]
  29. F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).
  30. J. L. Hall and M. S. Taubman, “Laser stabilization,” in Handbook of Optics, 2nd ed. (2001).
  31. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
    [Crossref]
  32. D. W. Allan, “Should the classical variance be used as a basic measure in standards metrology?” IEEE Trans. Instrum. Meas. IM-36, 646–654 (1987).
  33. J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567 (1999).
    [Crossref]
  34. L. Stern, R. Zektzer, N. Mazurski, and U. Levy, “Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor,” Laser Photon. Rev. 10, 1016–1022 (2016).
  35. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [Crossref]

2016 (4)

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

L. Stern, R. Zektzer, N. Mazurski, and U. Levy, “Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor,” Laser Photon. Rev. 10, 1016–1022 (2016).

2015 (4)

2014 (1)

2013 (1)

2012 (4)

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012).
[Crossref]

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
[Crossref]

L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (1)

2008 (3)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (1)

2005 (2)

2004 (1)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

2000 (1)

1999 (1)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567 (1999).
[Crossref]

1992 (1)

1987 (1)

D. W. Allan, “Should the classical variance be used as a basic measure in standards metrology?” IEEE Trans. Instrum. Meas. IM-36, 646–654 (1987).

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ahmed, Z.

Albrektsen, O.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Allan, D. W.

D. W. Allan, “Should the classical variance be used as a basic measure in standards metrology?” IEEE Trans. Instrum. Meas. IM-36, 646–654 (1987).

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).

Baets, R.

Bao, M. H.

Bartolozzi, I.

Bienstman, P.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Bogaerts, W.

Bomse, D. S.

Bondarenko, O.

Boyd, R. W.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Cai, H.

Cardenas, J.

Carmon, T.

Chen, L.

Cheung, K. C.

Chrostowski, L.

Claes, T.

De Vos, K.

Del’Haye, P.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Desiatov, B.

Dimotsantou, M.-E.

Donzella, V.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Duraibabu, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Egan, P. F.

Evlyukhin, A. B.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Fainman, Y.

Fan, J.

Flagan, R. C.

Flueckiger, J.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Gaeta, A. L.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
[Crossref]

Gao, B.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

García, D. G.

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

Gavela, A. F.

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Goykhman, I.

Grist, S. M.

Hafezi, M.

Hall, J. L.

M. S. Taubman and J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

J. L. Hall and M. S. Taubman, “Laser stabilization,” in Handbook of Optics, 2nd ed. (2001).

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Harfouche, M.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Hendricks, J. H.

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Hollberg, L.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Holzwarth, R.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huang, Y. P.

Ji, X. M.

Khajavikhan, M.

Kim, D.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. J. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558–3566 (2005).
[Crossref]

Kirk, J. T.

Kitching, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Knappe, S.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kwong, D. L.

Lechuga, L. M.

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

Leen, G.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levine, J.

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567 (1999).
[Crossref]

Levy, U.

Lewis, E.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Liapis, A. C.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Liew, L.-A.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Lipson, M.

Liu, A. Q.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Mazurski, N.

L. Stern, R. Zektzer, N. Mazurski, and U. Levy, “Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor,” Laser Photon. Rev. 10, 1016–1022 (2016).

A. Naiman, B. Desiatov, L. Stern, N. Mazurski, J. Shappir, and U. Levy, “Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform,” Opt. Lett. 40, 1892–1895 (2015).
[Crossref]

McGrath, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Naiman, A.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Nezhad, M. P.

Nielsen, M. G.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Poeggel, S.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Poitras, C. B.

Popescu, P.

Pors, A.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Preston, K.

Radko, I. P.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Ramirez, J. C.

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

Ratner, D. M.

Ricker, J. E.

Robinson, J. T.

Rokhsari, H.

Saha, K.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
[Crossref]

Scace, G. E.

Schacht, E.

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Schmidt, S. A.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Schwindt, P. D. D.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Sendowski, J.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shah, V.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Shappir, J.

Shi, W.

Shi, Z.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Siddiqui, M. R.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Silver, J. A.

Simic, A.

Spillane, S.

Stanton, A. C.

Stern, L.

Stone, J. A.

Strouse, G. F.

Talebi Fard, S.

Taubman, M. S.

Taylor, J. M.

Tosi, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Träger, F.

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

Tsai, J. M.

Vahala, K. J.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).

Venkataraman, V.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Willatzen, M.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Xu, H.

Yang, L.

Yariv, A.

Zektzer, R.

L. Stern, R. Zektzer, N. Mazurski, and U. Levy, “Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor,” Laser Photon. Rev. 10, 1016–1022 (2016).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, X.

Zhou, J.

Appl. Opt. (1)

Appl. Phys. B (3)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Appl. Phys. Lett. (3)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

D. W. Allan, “Should the classical variance be used as a basic measure in standards metrology?” IEEE Trans. Instrum. Meas. IM-36, 646–654 (1987).

Laser Photon. Rev. (1)

L. Stern, R. Zektzer, N. Mazurski, and U. Levy, “Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor,” Laser Photon. Rev. 10, 1016–1022 (2016).

Nano Lett. (2)

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10, 4571–4577 (2010).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Photonics (1)

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012).
[Crossref]

Opt. Express (10)

T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. J. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558–3566 (2005).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref]

B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18, 18592–18597 (2010).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
[Crossref]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[Crossref]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
[Crossref]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567 (1999).
[Crossref]

Sensors (2)

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285–300 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15, 17115–17148 (2015).
[Crossref]

Other (3)

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

J. L. Hall and M. S. Taubman, “Laser stabilization,” in Handbook of Optics, 2nd ed. (2001).

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic representation of cascaded MRRs. (b) Illustration of the spectrum of the reference MRR (in blue) and the sensing MRR (solid green and dashed green). The sensing MRR curve is illustrated with and without the refractive index change.
Fig. 2.
Fig. 2. (a) SEM image of the cascaded LOCOS MRRs. (b) Measured spectrum of the cascaded MRRs. (c) Zoomed transmission around two adjacent dips, separated by 78.5 pm/10.03 GHz.
Fig. 3.
Fig. 3. Schematic illustration of dual locking schemes. Two lasers are locked simultaneously to the cascaded MRRs. The beat signal of these two lasers is measured using an oscilloscope or a spectrum analyzer.
Fig. 4.
Fig. 4. (a) Calibrated integrators output as a function of time of both servo-loops. (b) Difference between the integrators output as function of time.
Fig. 5.
Fig. 5. Normalized frequency difference as a function of time for two different operation regimes: (a) one laser locked to a MRR and the second laser free running, and subsequently both lasers locked to both MRRs, and (b) two lasers locked to both MRRs and subsequently both lasers free running.
Fig. 6.
Fig. 6. Overlapping Allan deviation (based on measurements in Fig. 5) of the refractive index presented for three cases: a single laser locked to an MRR with the second laser free running (red line), two lasers free running (green line), and the case where each of the two lasers is locked to its dedicated MRR (blue line).
Fig. 7.
Fig. 7. (a) Schematic illustration of our NSOM tip illuminating light on the left MRR, and thus creating a heat gradient via optical absorption in the silicon bottom layer. (b) Temperature difference between the two MRRs as inferred from the measured beat frequency as a function of time, while changing the optical power illuminated by the NSOM probe. Inset: temperature as a function of illuminating power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σy2(τ)=12(N1)k=1N1(yk+1yk)2,

Metrics