Abstract

A fundamental advantage of lasers is their ability to produce a large number of photons in a single optical mode, yet this is achieved in only a minor fraction of devices due to the instability mechanism called spatial hole burning. Here, we exploit the spatial hole burning free nature of a stimulated scattering gain medium to demonstrate single longitudinal mode (SLM) operation in a generic standing wave cavity. A continuous wave diamond Raman oscillator with multi-Watt-level output power and a frequency stability of 80 MHz is demonstrated without use of additional mode-selective elements. Mode stability is addressed by considering the coupling of the Stokes power with thermally induced optical path length changes in the gain medium. The results foreshadow a novel approach for greatly extending the power and wavelength range of SLM laser sources, and with potential advantages for achieving sub-Poissonian intensity noise and sub-Schawlow–Townes linewidths.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-frequency 620  nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain

Xuezong Yang, Ondrej Kitzler, David J. Spence, Robert J. Williams, Zhenxu Bai, Soumya Sarang, Lei Zhang, Yan Feng, and Richard P. Mildren
Opt. Lett. 44(4) 839-842 (2019)

Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain

Soumya Sarang, Ondrej Kitzler, Oliver Lux, Zhenxu Bai, Robert J. Williams, David J. Spence, and Richard P. Mildren
OSA Continuum 2(4) 1028-1038 (2019)

A single-frequency intracavity Raman laser

Quan Sheng, Ran Li, Andrew J. Lee, David J. Spence, and Helen M. Pask
Opt. Express 27(6) 8540-8553 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  2. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68 (1975).
    [Crossref]
  3. C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
    [Crossref]
  4. S. A. Collins and G. R. White, “Interferometer laser mode selector,” Appl. Opt. 2, 448 (1963).
    [Crossref]
  5. V. Evtuhov and A. Siegman, “A “twisted-mode” technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142 (1965).
    [Crossref]
  6. J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171 (1969).
    [Crossref]
  7. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65 (1985).
    [Crossref]
  8. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24 (1989).
    [Crossref]
  9. G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457 (1990).
    [Crossref]
  10. O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.
  11. S. M. Spuler and S. D. Mayor, “Raman shifter optimized for lidar at a 1.5 μm wavelength,” Appl. Opt. 46, 2990 (2007).
    [Crossref]
  12. C. Y. Lee, C. C. Chang, P. H. Tuan, C. Y. Cho, K. F. Huang, and Y. F. Chen, “Cryogenically monolithic self-Raman lasers: observation of single-longitudinal-mode operation,” Opt. Lett. 40, 1996 (2015).
    [Crossref]
  13. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
    [Crossref]
  14. L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37, 4796 (2012).
    [Crossref]
  15. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393 (1991).
    [Crossref]
  16. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
    [Crossref]
  17. A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
    [Crossref]
  18. D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
    [Crossref]
  19. R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp 1.
  20. G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46, 89 (1975).
    [Crossref]
  21. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
    [Crossref]
  22. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152 (2014).
    [Crossref]
  23. O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590 (2015).
    [Crossref]
  24. R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
    [Crossref]
  25. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874 (2010).
    [Crossref]
  26. H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56 (2016).
    [Crossref]
  27. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436 (1994).
    [Crossref]
  28. J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
    [Crossref]
  29. M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
    [Crossref]
  30. H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
    [Crossref]

2016 (2)

B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56 (2016).
[Crossref]

2015 (4)

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, P. H. Tuan, C. Y. Cho, K. F. Huang, and Y. F. Chen, “Cryogenically monolithic self-Raman lasers: observation of single-longitudinal-mode operation,” Opt. Lett. 40, 1996 (2015).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
[Crossref]

2014 (1)

2012 (2)

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37, 4796 (2012).
[Crossref]

2010 (1)

2007 (1)

2005 (1)

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

2001 (1)

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

2000 (1)

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

1998 (1)

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

1994 (1)

1992 (1)

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
[Crossref]

1991 (1)

1990 (1)

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457 (1990).
[Crossref]

1989 (1)

1985 (1)

1975 (2)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68 (1975).
[Crossref]

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46, 89 (1975).
[Crossref]

1969 (1)

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171 (1969).
[Crossref]

1965 (2)

V. Evtuhov and A. Siegman, “A “twisted-mode” technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142 (1965).
[Crossref]

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[Crossref]

1963 (2)

C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
[Crossref]

S. A. Collins and G. R. White, “Interferometer laser mode selector,” Appl. Opt. 2, 448 (1963).
[Crossref]

Amtmann, K.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

Baer, T.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457 (1990).
[Crossref]

Bartram, S. F.

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46, 89 (1975).
[Crossref]

Beserman, R.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171 (1969).
[Crossref]

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[Crossref]

Burns, D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

Bursill, L. A.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

Byer, R. L.

Chang, C. C.

Chen, Y. F.

Cho, C. Y.

Coe, S. E.

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Cohen, O.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Collins, S. A.

Cui, J. B.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

Danielmeyer, H. G.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171 (1969).
[Crossref]

Dawson, M. D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

deMars, G.

C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
[Crossref]

Evtuhov, V.

Ezekiel, S.

Fang, A.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Feng, Y.

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

Hak, D.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Hall, C. E.

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Hänsch, T. W.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68 (1975).
[Crossref]

Hastie, J. E.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

Helmfrid, S.

Hu, J.

Huang, K. F.

Jasbeer, H.

Jones, R.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Kane, T. J.

Kemp, A. J.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

Kintz, G. J.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457 (1990).
[Crossref]

Kitzler, O.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152 (2014).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.

Lee, C. Y.

Ley, L.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

Lin, J.

Liu, A. S.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Liu, M. S.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

Lux, O.

O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.

Marte, M. A. M.

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
[Crossref]

Mayor, S. D.

McKay, A.

Mildren, R. P.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56 (2016).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590 (2015).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152 (2014).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874 (2010).
[Crossref]

R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp 1.

O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.

Mooradian, A.

Nold, J.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

Paniccia, M.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Pickles, C. S. J.

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Piper, J. A.

Prawer, S.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

Ristein, J.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

Ritsch, H.

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
[Crossref]

Rong, H. S.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Sabella, A.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874 (2010).
[Crossref]

Sarang, S.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56 (2016).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.

Savitski, V. G.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

Schawlow, A. L.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68 (1975).
[Crossref]

Schreiber, T.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[Crossref]

Siegman, A.

Slack, G. A.

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46, 89 (1975).
[Crossref]

Smith, S. P.

Spence, D. J.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590 (2015).
[Crossref]

Spuler, S. M.

Statz, H.

C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
[Crossref]

Strecker, M.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

Sussmann, R. S.

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Tang, C. L.

C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
[Crossref]

Tatsuno, K.

Tuan, P. H.

Twitchen, D. J.

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Wang, J.

White, G. R.

Williams, R. J.

Zarinetchi, F.

Zayhowski, J. J.

Zhang, L.

Zoller, P.

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171 (1969).
[Crossref]

Diamond Rel. Mater. (1)

D. J. Twitchen, C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall, “Thermal conductivity measurements on CVD diamond,” Diamond Rel. Mater. 10, 731 (2001).
[Crossref]

Europhys. Lett. (1)

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457 (1990).
[Crossref]

IEEE J. Quantum. Electron. (2)

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump—probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum. Electron. 51, 1 (2015).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum. Electron. 48, 328 (2012).
[Crossref]

J. Appl. Phys. (3)

C. L. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289 (1963).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83, 7929 (1998).
[Crossref]

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46, 89 (1975).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405 (2015).
[Crossref]

Nature (1)

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref]

Opt. Commun. (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68 (1975).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[Crossref]

Phys. Rev. B (1)

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order Raman phonon line of diamond,” Phys. Rev. B 61, 3391 (2000).
[Crossref]

Phys. Rev. Lett. (1)

B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Other (2)

O. Lux, S. Sarang, O. Kitzler, and R. P. Mildren, “Exploiting spatial-hole-burning-free Raman gain to realize high-power single-longitudinal mode oscillators,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper ATh3A.2.

R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram showing the intracavity standing wave and the periodic modulation driven in the phonon field in a stimulated scattering laser (top) and in the inversion density in a conventional laser (bottom).
Fig. 2.
Fig. 2. (a) Schematic of the diamond Raman oscillator. IM: input mirror, OC: output coupler, LPF: long-pass filter, L1, L2: lenses. (b) The diamond Raman gain profile and cavity mode spacing. (c) Stokes spectra for different temperatures of the DFB pump laser.
Fig. 3.
Fig. 3. Output power (red circles) and conversion efficiency (green squares) of the external Raman oscillator. The error bars indicate the standard deviation. The inset shows the transverse intensity distribution of the Stokes beam at maximum output power.
Fig. 4.
Fig. 4. Scanning Fabry–Pérot interferometer traces of the Raman laser emission showing the transition from SLM to multiple longitudinal modes as the output power is increased to 10 W. The mode spacing of 1.3 GHz corresponds to the optical cavity length of 113 mm.
Fig. 5.
Fig. 5. Wavelength stability of the Raman laser emission over three minutes for (a) 1.2 W and (b) 10 W Stokes power. The colored area represents the standard deviation from the mean value, which is indicated by the central dashed line.
Fig. 6.
Fig. 6. Resonant enhancement of the diamond Raman laser: (a) the measured variation of the intracavity pump (blue line) and Stokes output power (red line) upon scanning of the cavity length and (b) a theoretical simulation of the dynamics taking into account thermal effects in the diamond that affect the optical cavity length and lead to a complex feedback mechanism. The dashed lines show the behavior below the threshold.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Qν=N(α/Q)0EpES*ω02ων2i2ωνΓ,
PcavPinc=[(1RIMROC(1γ))2+4RIMROC(1γ)·sin2(2πL/λp)]1,

Metrics