Abstract

In 1968, Veselago predicted that a thin film composed of a material with a negative refractive index would act as a flat lens [Sov. Phys. Usp. 10, 509 (1968)]. Hyperbolic metamaterials have been designed that show negative refraction, but the condition of an isotropic refractive index n=1 required to realize a diffraction-limited focus cannot be realized using the hyperbolic dispersion. Here, we present an experimental realization of a metamaterial design in which the dispersion is described by spherical rather than hyperbolic isofrequency wavevector contours, emulating an isotropic refractive index n=1. We fabricate a flat lens that operates in the UV at λ=364  nm using a silver/titanium dioxide single-periodic thin-film multilayer structure. Using confocal microscopy, we find a clear focus positioned only 350 nm away from the flat lens surface, in very good agreement with analytical calculations and numerical simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A new planar left-handed metamaterial composed of metal-dielectric-metal structure

Ming Kang, Nian-Hai Shen, Jing Chen, Jian Chen, Ya-Xian Fan, Jianping Ding, Hui-Tian Wang, and Peiheng Wu
Opt. Express 16(12) 8617-8622 (2008)

Superlenses, metamaterials, and negative refraction

José A. Ferrari and César D. Perciante
J. Opt. Soc. Am. A 26(1) 78-84 (2009)

Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials

Lei Sun, Fei Cheng, Cherian J. Mathai, Shubhra Gangopadhyay, Jie Gao, and Xiaodong Yang
Opt. Express 22(19) 22974-22980 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. P. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259–263 (2003).
    [Crossref]
  3. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
    [Crossref]
  4. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
    [Crossref]
  5. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [Crossref]
  6. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  7. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
    [Crossref]
  8. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
    [Crossref]
  9. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
    [Crossref]
  10. H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
    [Crossref]
  11. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
    [Crossref]
  12. A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
    [Crossref]
  13. A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
    [Crossref]
  14. J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Towards-1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses,” Opt. Express 15, 7720–7729 (2007).
    [Crossref]
  15. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
    [Crossref]
  16. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
    [Crossref]
  17. R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
    [Crossref]
  18. H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
    [Crossref]
  19. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
    [Crossref]

2014 (1)

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

2013 (3)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref]

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

2012 (1)

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

2011 (2)

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

2010 (1)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

2009 (1)

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

2008 (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

2007 (2)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Towards-1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses,” Opt. Express 15, 7720–7729 (2007).
[Crossref]

2006 (1)

H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[Crossref]

2004 (2)

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

2003 (2)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

P. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259–263 (2003).
[Crossref]

2000 (1)

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Alù, A.

Argyropoulos, C.

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

P. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259–263 (2003).
[Crossref]

Belov, P. A.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

de Waele, R.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Enoch, S.

Estakhri, N. M.

Fan, D.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Gay-Balmaz, P.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Gralak, B.

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Jiang, H.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Kivshar, Y. S.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

Kuipers, L.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Lequime, M.

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Liu, H.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Luo, H.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Lv, Q.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Maas, R.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

Martin, O. J. F.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Maslovski, S. I.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Monticone, F.

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

Parsons, J.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

Paulus, M.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Polman, A.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[Crossref]

Shu, W.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Simovski, C. R.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Smith, D. R.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Tayeb, G.

Verhagen, E.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

Vozianova, A. V.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Wen, S.

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Zhang, J.

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

ACS Photon. (1)

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photon. 1, 670–676 (2014).
[Crossref]

Appl. Phys. Lett. (3)

H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

J. Opt. A (1)

H. Liu, Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, “Focusing of vectorial fields by a slab of indefinite media,” J. Opt. A 11, 105103 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

P. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259–263 (2003).
[Crossref]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[Crossref]

Phys. Rev. E (1)

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Phys. Rev. Lett. (1)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Science (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2533 KB)      Supplementary document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Hyperbolic IFC calculated for λ 0 = 364    nm ( k 0 = 17.3    μm 1 ) described by effective medium theory (red) and a periodic Ag / TiO 2 multilayer structure with a 1 nm unit cell (green), with d m = 3 d d and neglecting losses. Increasing the unit cell size to 50 nm bends the IFC away from the hyperbole (blue). The vertical dashed line corresponds to the parallel momentum of a plane wave in air incident at 30°. The Poynting vector shows negative refraction. The inset shows a sketch of the geometry, where gray corresponds to Ag and blue to TiO 2 . (b) Calculated Poynting vector angle for the hyperbolic metamaterial (red), ideal spherical IFC (green), and realistic geometry including losses (blue). The black dashed line corresponds to the ideal case θ ref r = θ inc . (c) Increasing the unit cell size from a = 1    nm to a = 100    nm changes the curvature of the IFC. For a unit cell size of a = 86.0    nm , with d m = 64.6    nm and d d = 21.4    nm , the curvature is spherical with a radius equal to k 0 (black dashed curve). The gray line corresponds to the band edge, located at k z = π / a . (d) Including losses, the IFC changes shape [blue, green is lossless from (c)], but the curvature is the same up to large angles of incidence (55°).
Fig. 2.
Fig. 2. (a) SEM image of a cross section of a fabricated multilayer structure. Five unit cells of Ag (light) and TiO 2 (dark) are clearly visible. The top TiO 2 layer is overcoated by Pt to improve the quality of the FIB cross-section. (b) Optical microscope image of multilayer structures ( 25 × 25    μm ) deposited on a SiN membrane window (blue). The other regions of the multilayer stack are removed using a lift-off procedure. The opposite side of the membrane window is coated with a Cr masking layer, in which slits acting as an object for the flat lens are fabricated using FIB milling. (c) SEM image of a 100 nm wide slit in the Cr masking layer. The underlying SiN is exposed.
Fig. 3.
Fig. 3. (a) Sketch of the confocal microscope setup. The TM-polarized incident beam is weakly focused on the object slit. The sample stage is scanned in the lateral x direction. The top collection arm of the microscope body is scanned in the vertical z direction. (b) Confocal scan ( λ 0 = 364    nm ) of the signal of a reference slit (left) and sample slit (right) above the multilayer metamaterial. The normalized transmitted signal is plotted on a log 10 scale. There is a large difference in amplitude between reference and sample due to the reflection and absorption by the multilayer stack. Focus positions are indicated by the white arrows. Normalized amplitude (c) and width (d) of the fitted Gaussian profile as a function of z . A clear vertical offset of 790 nm (indicated by the black arrow) is observed between the reference (red) and sample (blue) signal; the corresponding distance between lens surface and focus is 350 nm.
Fig. 4.
Fig. 4. (a) Confocal scan ( λ 0 = 364    nm ) shows the normalized transmission as a function of lateral sample position x and vertical microscope body position z . A clear image of the slit is observed with a FWHM of 350 nm. (b) Measured spatial intensity profile through the focus (black), compared to dipole calculations (red) and a FDTD simulation of the complete structure (blue).

Metrics