Abstract

Radiation patterns and the resonance wavelength of a plasmonic antenna are significantly influenced by its local environment, particularly its substrate. Here, we experimentally explore the role of dispersive substrates, such as aluminum- or gallium-doped zinc oxide in the near infrared and 4H-silicon carbide in the mid-infrared, upon Au plasmonic antennas, extending from dielectric to metal-like regimes, crossing through epsilon-near-zero (ENZ) conditions. We demonstrate that the vanishing index of refraction within this transition induces a “slowing down” of the rate of spectral shift for the antenna resonance frequency, resulting in an eventual “pinning” of the resonance near the ENZ frequency. This condition corresponds to a strong backward emission with near-constant phase. By comparing heavily doped semiconductors and undoped, polar dielectric substrates with ENZ conditions in the near- and mid-infrared, respectively, we also demonstrate the generality of the phenomenon using both surface plasmon and phonon polaritons, respectively. Furthermore, we also show that the redirected antenna radiation induces a Fano-like interference and an apparent stimulation of optic phonons within SiC.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates

Clayton T. DeVault, Vladimir A. Zenin, Anders Pors, Krishnakali Chaudhuri, Jongbum Kim, Alexandra Boltasseva, Vladimir M. Shalaev, and Sergey I. Bozhevolnyi
Optica 5(12) 1557-1563 (2018)

Accumulation and directionality of large spontaneous emission enabled by epsilon-near-zero film

Xueke Duan, Fan Zhang, Zhiyuan Qian, He Hao, Lingxiao Shan, Qihuang Gong, and Ying Gu
Opt. Express 27(5) 7426-7434 (2019)

Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials

R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, and Z. Jacob
J. Opt. Soc. Am. B 32(10) 2074-2080 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
    [Crossref]
  2. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref]
  3. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
    [Crossref]
  4. Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
    [Crossref]
  5. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  6. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290 (2011).
    [Crossref]
  7. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  8. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
  9. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
    [Crossref]
  10. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
  11. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref]
  12. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
  13. J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
    [Crossref]
  14. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [Crossref]
  15. T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
    [Crossref]
  16. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [Crossref]
  17. Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
    [Crossref]
  18. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).
  19. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
    [Crossref]
  20. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (enz) materials,” Phys. Rev. Lett. 97, 157403 (2006).
    [Crossref]
  21. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [Crossref]
  22. D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
    [Crossref]
  23. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20, 2448–2453 (2003).
    [Crossref]
  24. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
    [Crossref]
  25. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
    [Crossref]
  26. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
    [Crossref]
  27. R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
    [Crossref]
  28. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
    [Crossref]
  29. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40, 1500–1503 (2015).
    [Crossref]
  30. T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
    [Crossref]
  31. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
    [Crossref]
  32. Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
    [Crossref]
  33. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
    [Crossref]
  34. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
  38. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref]
  39. F. J. González and J. Alda, “Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction,” Opt. Commun. 284, 1429–1434 (2011).
    [Crossref]
  40. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
  41. B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and coupling regimes in nanoantenna arrays,” Opt. Express 20, 27725–27739 (2012).
    [Crossref]
  42. R. King and G. Smith, Antenna in Matter (MIT, 1981).
  43. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  44. N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
    [Crossref]
  45. M. Memarian and G. V. Eleftheriades, “Dipole radiation near anisotropic low-permittivity media,” Prog. Electromagn. Res. 142, 437–462 (2013).
    [Crossref]
  46. M. Memarian and G. V. Eleftheriades, “Dirac leaky-wave antennas for continuous beam scanning from photonic crystals,” Nat. Commun. 6, 5855 (2015).
  47. M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2, e114 (2013).
    [Crossref]
  48. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref]
  49. T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
    [Crossref]
  50. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
  51. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive 1D Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
    [Crossref]
  52. R. Kullock, S. Grafstrom, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2001).
    [Crossref]
  53. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
    [Crossref]
  54. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
    [Crossref]

2015 (5)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40, 1500–1503 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Dirac leaky-wave antennas for continuous beam scanning from photonic crystals,” Nat. Commun. 6, 5855 (2015).

2014 (6)

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

2013 (14)

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2, e114 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Dipole radiation near anisotropic low-permittivity media,” Prog. Electromagn. Res. 142, 437–462 (2013).
[Crossref]

2012 (4)

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and coupling regimes in nanoantenna arrays,” Opt. Express 20, 27725–27739 (2012).
[Crossref]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

2011 (4)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290 (2011).
[Crossref]

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

F. J. González and J. Alda, “Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction,” Opt. Commun. 284, 1429–1434 (2011).
[Crossref]

2010 (2)

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

2009 (3)

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive 1D Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

2008 (1)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

2007 (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

2006 (2)

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (enz) materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

2003 (1)

2002 (2)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref]

2001 (1)

1999 (1)

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

1982 (1)

N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adams, D.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Aizpurua, J.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Alda, J.

F. J. González and J. Alda, “Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction,” Opt. Commun. 284, 1429–1434 (2011).
[Crossref]

Alonso-Gonzalez, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Altug, H.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Atkinson, R.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290 (2011).
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Basov, D. N.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Bassim, N. D.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Bezares, F. J.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

Boltasseva, A.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290 (2011).
[Crossref]

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Boreman, G. D.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Briggs, D.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

Caldwell, J. D.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and coupling regimes in nanoantenna arrays,” Opt. Express 20, 27725–27739 (2012).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Campione, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive 1D Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

Capretti, A.

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Castro Neto, A. H.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Chen, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Chen, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Chigrin, D. N.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

Christiansen, J.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Cornelius, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive 1D Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

Dai, S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Dal Negro, L.

de Ceglia, D.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

DeVault, C.

Dewalt, C. J.

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

Elachi, C.

N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
[Crossref]

Eleftheriades, G. V.

M. Memarian and G. V. Eleftheriades, “Dirac leaky-wave antennas for continuous beam scanning from photonic crystals,” Nat. Commun. 6, 5855 (2015).

M. Memarian and G. V. Eleftheriades, “Dipole radiation near anisotropic low-permittivity media,” Prog. Electromagn. Res. 142, 437–462 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2, e114 (2013).
[Crossref]

Ellis, A. R.

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

Ellis, C. T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Enders, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

Eng, L. M.

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40, 1500–1503 (2015).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (enz) materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Evans, P.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Evans, P. R.

Fahsold, G.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Fei, Z.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Ferrera, M.

Fogler, M. M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Francescato, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Garcia de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Giannini, V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Giles, A. J.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and coupling regimes in nanoantenna arrays,” Opt. Express 20, 27725–27739 (2012).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

González, F. J.

F. J. González and J. Alda, “Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction,” Opt. Commun. 284, 1429–1434 (2011).
[Crossref]

Goodhue, W.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Grafstrom, S.

Greffet, J.-J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Gregory, R.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Guo, J.

Hauer, B.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

Hendren, W.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref]

Hong, M.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Huth, F.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Inampudi, S.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Jacob, Z.

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Jarillo-Herrero, P.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Karim, S.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Kasica, R.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

Keeler, G. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Keilmann, F.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Kim, J.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Kim, J.-Y.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

King, R.

R. King and G. Smith, Antenna in Matter (MIT, 1981).

Kinsey, N.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Klem, J. F.

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

Kolb, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Kretinin, A. V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Kuhta, N.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Kullock, R.

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Li, P.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

Liu, M. K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Liu, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Long, J. P.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and coupling regimes in nanoantenna arrays,” Opt. Express 20, 27725–27739 (2012).
[Crossref]

Lovrincic, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Luk, T. S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Ma, Q.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Marquier, F.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Maß, T. W.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Memarian, M.

M. Memarian and G. V. Eleftheriades, “Dirac leaky-wave antennas for continuous beam scanning from photonic crystals,” Nat. Commun. 6, 5855 (2015).

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2, e114 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Dipole radiation near anisotropic low-permittivity media,” Prog. Electromagn. Res. 142, 437–462 (2013).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Molesky, S.

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Murphy, A.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Nagao, T.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

Naik, G.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Narimanov, E.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Neubrech, F.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Neumann, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Osmond, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Owrutsky, J. C.

Owrutsky, J. O.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Papas, C.

N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Piestun, R.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Podolskiy, V.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Podolskiy, V. A.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Pollard, R.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Pollard, R. J.

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Powell, A. R.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Prasankumar, R. P.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Prokes, S.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Pucci, A.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

Rendell, R. W.

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Scalora, M.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Schwartz, B. T.

Shalaev, V.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Sharac, N.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Shelton, D. J.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Shirey, L.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–27601 (2013).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (enz) materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

Simpkins, B. S.

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Sinclair, M. B.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

Slocum, D.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Smith, G.

R. King and G. Smith, Antenna in Matter (MIT, 1981).

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Taubner, T.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref]

Thiemens, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Tischler, J. G.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Tiwald, T. E.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Toimil-Molares, M.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Vangala, S.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

Vincenti, M. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Wagner, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Wang, T.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

Wang, Y.

Wasserman, D.

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Weber, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

Wetteroth, T.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Wheeler, V.

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Wilson, S.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

Woollam, J. A.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Wurtz, G.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

Zayats, A.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Zollner, S.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

ACS Photon. (1)

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, and M. Hong, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Appl. Phys. B (1)

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Appl. Phys. Lett. (4)

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,”Appl. Phys. Lett. 105, 131109 (2014).
[Crossref]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive 1D Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[Crossref]

Light Sci. Appl. (1)

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2, e114 (2013).
[Crossref]

Nano Lett. (4)

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11, 2104–2108 (2011).
[Crossref]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13, 5051–5055 (2013).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13, 5391–5396 (2013).
[Crossref]

J. D. Caldwell, O. J. Glembocki, N. Sharac, J. P. Long, J. O. Owrutsky, I. Vurgaftman, J. G. Tischler, F. J. Bezares, V. Wheeler, N. D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S. A. Maier, “Low-Loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators,” Nano Lett. 13, 3690–3697 (2013).
[Crossref]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 1 (2014).

Nat. Commun. (3)

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Dirac leaky-wave antennas for continuous beam scanning from photonic crystals,” Nat. Commun. 6, 5855 (2015).

Nat. Photonics (3)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon near zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Nature (5)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref]

Opt. Commun. (1)

F. J. González and J. Alda, “Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction,” Opt. Commun. 284, 1429–1434 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (4)

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, and S. Fan, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60, 11464–11474 (1999).
[Crossref]

Phys. Rev. E (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

Phys. Rev. Lett. (6)

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (enz) materials,” Phys. Rev. Lett. 97, 157403 (2006).
[Crossref]

D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).

Proc. Natl. Acad. Sci. USA (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).

Prog. Electromagn. Res. (1)

M. Memarian and G. V. Eleftheriades, “Dipole radiation near anisotropic low-permittivity media,” Prog. Electromagn. Res. 142, 437–462 (2013).
[Crossref]

Radio Sci. (1)

N. Engheta, C. Papas, and C. Elachi, “Radiation patterns of interfacial dipole antennas,” Radio Sci. 17, 1557–1566 (1982).
[Crossref]

Sci. Rep. (1)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Science (2)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290 (2011).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

R. King and G. Smith, Antenna in Matter (MIT, 1981).

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1445 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Electrical field magnitude of a 2D antenna on substrates with different Re ( ε ) . The electrical field magnitude pattern of a two-dimensional antenna (infinitely long wire) placed at the interface between air and a semi-infinite (loss-less) dielectric medium with relative dielectric constant of (a)  Re ( ε ) = 2 , (b)  Re ( ε ) = 0.5 , (c)  Re ( ε ) = 10 4 0 , (d)  Re ( ε ) = 2 , (e)  Re ( ε ) = 50 , and (f)  Re ( ε ) = 100 .
Fig. 2.
Fig. 2. Optical properties of several ENZ materials. (a) Real (solid lines) and imaginary (dashed lines) parts of the dielectric function of Ga:ZnO (red lines), Al:ZnO (blue lines), and ZnO (green lines). The ENZ points are at 1.19 and 1.29 μm for Ga:ZnO and Al:ZnO, respectively. (b) The SiC dielectric function has the ENZ point at 10.3 μm and an ENP point at 12.55 μm.
Fig. 3.
Fig. 3. Schematic of the experimental setup. (a) 45-deg-tilted nanorods are sitting on a TCO layer deposited on a glass. The incident light is directed at the antenna array at an angle of incidence of Φ = 20    deg , and the cross-polarized reflection is detected. (b) In contrast to the Au nanorod antenna array on TCO layers, a nanorod array with rods aligned to the x axis is fabricated on a SiC substrate. Reflection is measured at an angle of incidence of Φ 22    deg . The schematic of dimensions (c) and (e) and the SEM images (d) and (f) of the Au nanorod array on the TCO substrate and on the SiC substrate, respectively, are shown.
Fig. 4.
Fig. 4. Optical characterization of nanorod antenna arrays on TCOs. (a) Experimental and (b) simulated cross-polarized reflection spectra of Au nanorod arrays, fabricated on TCOs (Ga:ZnO and Al:ZnO) and dielectric (ZnO) as labeled. Vertical red dashed line indicates the ENZ points for Al:ZnO and Ga:ZnO.
Fig. 5.
Fig. 5. Analytical characterization of nanorod antenna array on TCOs. (a) Effective refractive index and effective antenna length of nanorod antenna array sitting on Ga:ZnO, Al:ZnO, and ZnO are shown as a function of the resonance wavelength. (b) Simulation results for the norm of local electric fields of nanorod antenna with 400, 600, and 800 nm length on ZnO and Al:ZnO substrate at each resonance wavelength.
Fig. 6.
Fig. 6. Structural and optical characterization of nanorod antenna array on 4H-SiC. (a) Copolarized FTIR reflectance spectra for Au antenna arrays of varying lengths on 4H-SiC substrate in the vicinity of the LO phonon wavelength, where the ENZ condition occurs. (b) Simulated spectra for similar antenna lengths to those in (a). (c) Copolarized FTIR differential reflection spectra [R(SiC Only)—R(Antennas)] demonstrating the presence of resonances approaching the ENZ (LO phonon) and ENP (TO phonon) wavelengths of 4H-SiC.
Fig. 7.
Fig. 7. Analytical characterization of nanorod antenna array on SiC. (a) Calculated effective index (dashed lines, left axis) and effective antenna length (solid lines, right axis) for the antenna arrays on Si (red) and 4H-SiC (blue) substrates. The experimental resonance wavelengths as a function of antenna length are provided as the solid symbols. (b) Cross-polarized FTIR reflection spectra for Au antenna arrays with resonances near the ENZ condition. The Fano-like interference effect and increase in the LO phonon amplitude are maximized when overlap between the antenna resonance and the LO phonon occurs.
Fig. 8.
Fig. 8. Radiation patterns of nanorod antenna on ZnO and Ga:ZnO. (a) Radiation pattern of nanorod antennas with three different lengths (400, 600, and 800 nm) on ZnO and (b) on Ga:ZnO substrate at the corresponding resonance wavelength. Sectors with gray color indicate that the radiation pattern cannot be measured at the angle of φ from 70 to 110 deg due to the limitation of ellipsometry.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ res = 2 n eff ( L + 2 δ ) ,
n eff = ( Re ( ε eff ) 2 + Im ( ε eff ) 2 + Re ( ε eff ) ) / 2 .

Metrics