Abstract

Accurate visualization of biological events occurring on a sub-second scale requires high frame rate acquisition of image data from living tissues. Yet, fast imaging performance commonly comes at the cost of limited field-of-view and reduced image quality. Here, we report on a small-animal optoacoustic tomographic imaging concept based on scanning of a spherical detection array. The suggested approach delivers whole-body images of unparalleled quality while retaining real-time volumetric imaging capability within selected regions at the whole organ scale. Imaging performance was tested in tissue-mimicking phantoms and living animals, attaining nearly isotropic three-dimensional spatial resolution in the range of 250–500 μm across fields of view covering the entire mouse body. The system maintained high volumetric imaging rates of 100 frames per second within volumes of up to 1.5  cm3, which further allowed visualizing the fast motion of a beating mouse heart without gating the acquisition. The newly introduced approach is ideally suited for acquisition of both real-time and whole-body volumetric image data, thus offering powerful capacities for simultaneous anatomical, functional, and molecular imaging with optoacoustics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging

Rui Ma, Adrian Taruttis, Vasilis Ntziachristos, and Daniel Razansky
Opt. Express 17(24) 21414-21426 (2009)

Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths

X. Luís Deán-Ben and Daniel Razansky
Opt. Express 21(23) 28062-28071 (2013)

Optoacoustic imaging at kilohertz volumetric frame rates

Ali Özbek, Xosé Luís Deán-Ben, and Daniel Razansky
Optica 5(7) 857-863 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
    [Crossref]
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [Crossref]
  3. H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
    [Crossref]
  4. J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
    [Crossref]
  5. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
    [Crossref]
  6. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299–D306 (2009).
    [Crossref]
  7. R. Nuster, P. Slezak, and G. Paltauf, “High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection,” Biomed. Opt. Express 5, 2635–2647 (2014).
    [Crossref]
  8. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
    [Crossref]
  9. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724–1731 (2012).
    [Crossref]
  10. S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
    [Crossref]
  11. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
    [Crossref]
  12. H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
    [Crossref]
  13. R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
    [Crossref]
  14. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
    [Crossref]
  15. J. Jose, R. G. Willemink, S. Resink, D. Piras, J. Van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19, 2093–2104 (2011).
    [Crossref]
  16. A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
    [Crossref]
  17. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17, 10489–10498 (2009).
    [Crossref]
  18. A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
    [Crossref]
  19. J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
    [Crossref]
  20. N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
    [Crossref]
  21. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
    [Crossref]
  22. J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
    [Crossref]
  23. A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
    [Crossref]
  24. R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
    [Crossref]
  25. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)
  26. X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21, 28062–28071 (2013).
    [Crossref]
  27. M. Xu and L. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
    [Crossref]
  28. S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
    [Crossref]
  29. X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
    [Crossref]
  30. J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
    [Crossref]
  31. X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
    [Crossref]
  32. T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
    [Crossref]
  33. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
    [Crossref]
  34. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39, 7262–7271 (2012).
    [Crossref]
  35. D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
    [Crossref]
  36. X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
    [Crossref]
  37. M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Prob. 26, 125002 (2010).
    [Crossref]

2016 (2)

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

2015 (1)

X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
[Crossref]

2014 (6)

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

R. Nuster, P. Slezak, and G. Paltauf, “High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection,” Biomed. Opt. Express 5, 2635–2647 (2014).
[Crossref]

2013 (7)

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21, 28062–28071 (2013).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

2012 (4)

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724–1731 (2012).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39, 7262–7271 (2012).
[Crossref]

2011 (2)

2010 (5)

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[Crossref]

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Prob. 26, 125002 (2010).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
[Crossref]

2009 (4)

2008 (1)

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

2005 (2)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

M. Xu and L. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[Crossref]

2004 (1)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

2003 (2)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Aguirre, A.

Aichler, M.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

Anastasio, M.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Anastasio, M. A.

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

Baum, O.

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Beard, P.

Bednar, B.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Beziere, N.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Brecht, H.-P.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Buehler, A.

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[Crossref]

Burgholzer, P.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Burton, N. C.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Caballero, M. Á. A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

Chatni, M. R.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Chen, W.

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

Claussen, J.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Conjusteau, A.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Dean-Ben, X. L.

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

Deán-Ben, X. L.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
[Crossref]

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21, 28062–28071 (2013).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

Déan-Ben, X. L.

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

Del Rio, S. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

DelRio, S. P.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Demchenko, A. V.

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

Dima, A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

Distel, M.

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

Driessen, W. H.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Ermilov, S. A.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Estrada, H.

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Fehm, T. F.

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

Ford, S. J.

X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
[Crossref]

Fronheiser, M.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Gamelin, J.

Gateau, J.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

Gostic, M.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

Guo, P.

Guo, Z.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Haag, R.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Haltmeier, M.

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Prob. 26, 125002 (2010).
[Crossref]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Herzog, E.

Hofer, C.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Huang, F.

Jetzfellner, T.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Jose, J.

Kim, C.

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

Kim, J.

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

Kosanke, K.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

Kruger, R. A.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Laufer, J.

Lee, C.

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

Lee, S.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Leeuwen, T. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39, 7262–7271 (2012).
[Crossref]

Licha, K.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Ma, R.

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724–1731 (2012).
[Crossref]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[Crossref]

Manohar, S.

Maslov, K.

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Maslov, K. I.

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

Maurudis, A.

Morgan, T. G.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Morscher, S.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Nakamura, Y.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Nasiriavanaki, M.

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

Ntziachristos, V.

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724–1731 (2012).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
[Crossref]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[Crossref]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[Crossref]

Nuster, R.

Oraevsky, A. A.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Paltauf, G.

R. Nuster, P. Slezak, and G. Paltauf, “High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection,” Biomed. Opt. Express 5, 2635–2647 (2014).
[Crossref]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Park, S.

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

Patel, M.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Picot, P. A.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Piras, D.

Queirós, D.

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

Raivich, G.

Razansky, D.

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
[Crossref]

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21, 28062–28071 (2013).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724–1731 (2012).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
[Crossref]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[Crossref]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[Crossref]

Reinecke, D. R.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

Resink, S.

Rosenthal, A.

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
[Crossref]

Rummeny, E.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Schaur, P.

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

Scherzer, O.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Shoham, S.

Slezak, P.

Slump, C. H.

Sobol, E.

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Söntges, S.

Sroka, R.

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

Steenbergen, W.

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Su, R.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

Takahashi, H.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Takahashi, S.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Tanikawa, Y.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Taruttis, A.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[Crossref]

Thornton, M. M.

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Toujo, T.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Tsytsarev, V.

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

Van Hespen, J.

van Leeuwen, T. G.

Walch, A.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Wang, K.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Wang, L.

M. Xu and L. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[Crossref]

Wang, L. V.

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17, 10489–10498 (2009).
[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Wildgruber, M.

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Willemink, R. G.

Xia, J.

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Xu, M.

M. Xu and L. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[Crossref]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

Yamane, K.

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

Yao, J.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

Zangerl, G.

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Prob. 26, 125002 (2010).
[Crossref]

Zhang, E.

Zhu, Q.

Appl. Opt. (1)

Biomed. Eng. Lett. (1)

S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” Biomed. Eng. Lett. 4, 213–222 (2014).
[Crossref]

Biomed. Opt. Express (2)

IEEE Trans. Med. Imag. (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imag. 29, 1275–1285 (2010).
[Crossref]

IEEE Trans. Med. Imaging (1)

A. Buehler, X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “Volumetric optoacoustic imaging with multi-bandwidth deconvolution,” IEEE Trans. Med. Imaging 33, 814–821 (2014).
[Crossref]

IEEE Trans. Robot. (1)

S. Lee, Y. Nakamura, K. Yamane, T. Toujo, S. Takahashi, Y. Tanikawa, and H. Takahashi, “Image stabilization for in vivo microscopy by high-speed visual feedback control,” IEEE Trans. Robot. 24, 45–54 (2008).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005).
[Crossref]

Inverse Prob. (1)

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Prob. 26, 125002 (2010).
[Crossref]

J. Biomed. Opt. (4)

J. Xia, W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, “Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19, 16003 (2014)
[Crossref]

D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18, 076014 (2013).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
[Crossref]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14, 064007 (2009).
[Crossref]

J. Biophoton. (2)

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophoton. 9, 253–259 (2016).
[Crossref]

T. F. Fehm, X. L. Deán-Ben, P. Schaur, R. Sroka, and D. Razansky, “Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation,” J. Biophoton. 9, 934–941 (2016).
[Crossref]

Laser Phys. Lett. (1)

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Med. Phys. (5)

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39, 7262–7271 (2012).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40, 013302 (2013).
[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[Crossref]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100 (2010)

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref]

Nat. Protoc. (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

NeuroImage (2)

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, “Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo,” NeuroImage 64, 257–266 (2013).
[Crossref]

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, and B. Bednar, “Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization,” NeuroImage 65, 522–528 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photoacoustics (2)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

A. Taruttis, M. Wildgruber, K. Kosanke, N. Beziere, K. Licha, R. Haag, M. Aichler, A. Walch, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography of myocardial infarction,” Photoacoustics 1, 3–8 (2013).
[Crossref]

Phys. Med. Biol. (2)

X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted model-based optoacoustic reconstruction in acoustic scattering media,” Phys. Med. Biol. 58, 5555–5566 (2013).
[Crossref]

R. Ma, M. Distel, X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography,” Phys. Med. Biol. 57, 7227–7237 (2012).
[Crossref]

Phys. Rev. E (1)

M. Xu and L. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[Crossref]

Proc. SPIE (1)

R. B. Lam, R. A. Kruger, D. R. Reinecke, S. P. DelRio, M. M. Thornton, P. A. Picot, and T. G. Morgan, “Dynamic optical angiography of mouse anatomy using radial projections,” Proc. SPIE 7564, 756405 (2010).
[Crossref]

Sci. Rep. (1)

X. L. Deán-Ben, S. J. Ford, and D. Razansky, “High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion,” Sci. Rep. 5, 10133 (2015).
[Crossref]

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (76 KB)      Rotational 3D visualization of the reconstructed phantom volume.
» Visualization 2: AVI (461 KB)      Frame series acquired from the mouse heart and subsequently sorted into two bins.
» Visualization 3: AVI (2880 KB)      Rotational 3D views of the reconstructed data for vascular structures.
» Visualization 4: AVI (596 KB)      Fly-through video of cross-sectional slices, where deeper structures are visible.
» Visualization 5: AVI (257 KB)      Full image series, 200 frames slowed down to 25 frames per second.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Layout of the experimental system. The mouse is mounted vertically in a heated water bath and subsequently scanned by translating and rotating a spherical transducer array along the z and φ axes, as marked by the dashed arrows. Optoacoustic signals are excited using nanosecond-laser pulses. The time-resolved optoacoustic signals generated by each laser pulse are recorded at 256 individual detector locations of the spherical array, time-sampled by the data acquisition system (DAQ), and saved to PC for further processing and image reconstruction.
Fig. 2.
Fig. 2. Spatial resolution within the imaged field of view was determined using an agar phantom containing randomly distributed 100 μm diameter absorbing spheres. (a) MIP of the reconstructed phantom volume along the z axis. The focus of the spherical array geometry was set at a distance of 8.7 mm from the rotational axis. An exemplary region of interest is defined by the orange box. (b)–(d) A zoomed-in image of a reconstructed sphere, as indicated by an orange box in panel (a); three MIPs are shown from orthogonal directions. (e) and (f) show dependence of the radial, azimuthal, and elevational resolution on the radial position from the rotational axis. The focus of the spherical array was set at 5.5 mm and 8.7 mm from the rotational axis in (e) and (f), respectively.
Fig. 3.
Fig. 3. Volumetric reconstruction of the phantom containing crossed sutures. (a) MIP of the reconstructed volume along the y axis. The focal point of the matrix array was set to 8.7 mm from the rotational axis. (b)–(d) Single cross sections through the reconstructed volume at z axis positions indicated by the pink lines in (a). The pink line in the inset in (c) indicates distance between the two maxima used to determine the resolution according to the Sparrow criterion.
Fig. 4.
Fig. 4. (a) Exemplary plot of the correlation matrix of a series of 50 volumetric optoacoustic image frames acquired at a PRF of 100 Hz. Frames with respiratory motion can be identified by low values of the correlation coefficient, whereas frames with no respiratory motion show significantly higher correlation. (b) The 3D reconstruction acquired from a living mouse (MIP along the y axis) where all 50 frames at each single position were averaged before the stitching. (c) The same dataset reconstructed by using only the non-respiratory frames. Scale bar corresponds to 1 cm.
Fig. 5.
Fig. 5. Whole-body 3D image acquired from a living intact mouse. MIP views are shown from the (a) left-back, (b) back, (c) right-back, (d) front, and (e) right-front sides. (Legend): 1, left atrium; 2, cardiac ventricles; 3, liver; 4, spleen; 5, thoracic vessels; 6, kidney; 7, spine; 8, brown adipose tissue. A 3D rotational video as well as fly-through video of the cross-sectional images are further available in Visualization 3 and Visualization 4. Scale bar corresponds to 1 cm.
Fig. 6.
Fig. 6. Real-time overlay of the beating mouse heart onto a whole body anatomical image of the same mouse. Different phases of the cardiac cycle are shown: t=0  ms, ventricular systole; t=30  ms, ventricular filling; t=90  ms, ventricular diastole; t=110  ms, ventricular ejection. The full image series is available in Visualization 5. Scale bar corresponds to 1 cm.

Metrics